Chapter 17
THE CHEMISTRY OF ACIDS AND BASES

17-1. Under the Brønsted concept of acids and bases, a base is:
(a) a proton donor (b) a proton acceptor
(c) a hydroxide donor (d) an electron pair donor

17-2. Under the Brønsted concept of acids and bases, an acid is:
(a) a proton donor (b) a proton acceptor
(c) an electron pair donor (d) an electron pair acceptor

17-3. Under the Lewis concept of acids and bases, a base is:
(a) a proton donor (b) a proton acceptor
(c) an electron pair acceptor (d) an electron pair donor

17-4. Under the Lewis concept of acids and bases, an acid is:
(a) a proton donor (b) a proton acceptor
(c) an electron pair donor (d) an electron pair acceptor

17-5. Which of the following is NOT an acid-base conjugate pair?
(a) HCN and CN\(^-\)
(b) \(H_2O\) and \(OH^-\)
(c) \(H_2S\) and \(OH^-\)
(d) \(NH_4^+\) and \(NH_3\)

17-6. Which of the following is NOT an acid-base conjugate pair?
(a) HClO and Cl\(^-\)
(b) \(HNO_2\) and \(NO_2^-\)
(c) HF and F\(^-\)
(d) \(H_2CO_3\) and \(HCO_3^-\)

17-7. Knowing that HF is a stronger acid than \(H_3CCOOH\), determine, if possible, in which direction the following equilibrium lies.
\[HF(aq) + H_3CCOO^-(aq) \rightleftharpoons F^-(aq) + H_3CCOOH(aq)\]
(a) equilibrium lies to the left
(b) equilibrium lies to the right
(c) equilibrium is perfectly balanced left and right
(d) cannot be determined

17-8. Knowing that \(H_2S\) is a stronger acid than HCN, determine, if possible, in which direction the following equilibrium lies.
\[HCN(aq) + HS^-(aq) \rightleftharpoons CN^-(aq) + H_2S(aq)\]
(a) equilibrium lies to the left
(b) equilibrium lies to the right
(c) equilibrium is perfectly balanced left and right
(d) cannot be determined
17-9. The HSO_4^- ion is a stronger acid than HNO_2^-. Determine, if possible, in which direction the following equilibrium lies.

$$\text{HSO}_4^-(aq) + \text{NO}_2^-(aq) \rightleftharpoons \text{SO}_4^{2-}(aq) + \text{HNO}_2(aq)$$

(a) equilibrium lies to the left
(b) equilibrium lies to the right
(c) equilibrium is perfectly balanced left and right
(d) cannot be determined

17-10. Knowing that H_2S is a stronger acid than HS^-, determine, if possible, in which direction the following equilibrium lies.

$$2 \text{ HS}^-(aq) \rightleftharpoons \text{S}^{2-}(aq) + \text{H}_2\text{S(aq)}$$

(a) equilibrium lies to the left
(b) equilibrium lies to the right
(c) equilibrium is perfectly balanced left and right

17-11. At 50 °C the water ionization constant, K_w, is 5.48×10^{-14}. What is $[\text{H}_3\text{O}^+]$ in neutral water at 50 °C?

(a) 1.00×10^{-7} M
(b) 2.34×10^{-7} M
(c) 5.48×10^{-7} M
(d) 2.74×10^{-7} M

17-12. At 10 °C the water ionization constant, K_w, is 2.9×10^{-15}. What is $[\text{H}_3\text{O}^+]$ in neutral water at 10 °C?

(a) 4.44×10^{-6} M
(b) 1.00×10^{-7} M
(c) 1.70×10^{-7} M
(d) 5.39×10^{-8} M

17-13. We have a 0.00100 M solution of NaOH at 25 °C. What is $[\text{H}_3\text{O}^+]$ in this solution?

(a) 1.00×10^{-3} M
(b) 1.00×10^{-11} M
(c) 1.00×10^{-7} M
(d) 7.00 M

17-14. We add 0.535 g of NaOH to 100.0 mL of water at 25 °C. What is $[\text{H}_3\text{O}^+]$ in this solution?

(a) 0.134 M
(b) 1.34×10^{13} M
(c) 7.48×10^{-14} M
(d) 6.87×10^{-12} M

17-15. We dilute 1.00 mL of 1.00 M HCl solution to 100.0 mL. What is $[\text{OH}^-]$ in this solution at 25 °C?

(a) 1.00×10^{12} M
(b) 0.010 M
(c) 7.00×10^{-4} M
(d) 1.00×10^{-12} M

17-16. We have a 5.43×10^{-4} M solution of HNO$_3$ at 25 °C. What is $[\text{OH}^-]$ in this solution?

(a) 1.84×10^{-11} M
(b) 5.43×10^{-10} M
(c) 5.43×10^{-4} M
(d) 3.67×10^{-8} M

17-17. We have 500. mL of a solution that contains 0.0854 g of NaOH. What is the pH of this solution at 25 °C?

(a) 2.36
(b) 11.63
(c) 2.67
(d) 11.33
17-18. We have 300. mL of a solution that contains 0.0128 g of KOH. What is the pH of this solution at 25 °C?
 (a) 3.64 (b) 3.12
 (c) 10.88 (d) 10.36

17-19. We have a 4.63 x 10^{-4} M solution of HCl. What is the pH of this solution at 25 °C?
 (a) 3.33 (b) 10.67
 (c) 4.00 (d) 4.63

17-20. We have a 0.45 M solution of HNO₃. What is the pH of this solution at 25 °C?
 (a) -0.35 (b) 3.47
 (c) 10.53 (d) 0.35

17-21. We have a 5.82 x 10^{-10} M solution of HCl. What is the pH of this solution at 25 °C?
 (a) 4.76 (b) 9.23
 (c) 7.00 (d) 2.45

17-22. Concentrated HCl is 12 M. What is the pH of concentrated HCl at 25 °C?
 (a) 1.08 (b) -1.08
 (c) 12.00 (d) 1.55

BEGIN MATERIAL ON WEAK ACIDS AND BASES

17-23. What is [H₃O⁺] in a 0.10 M solution of HCN at 25 °C? (Kₐ for HCN = 4.0 x 10^{-10})
 (a) 1.58 x 10^{-9} M (b) 2.00 x 10^{-5} M
 (c) 6.32 x 10^{-6} M (d) 4.00 x 10^{-11} M

17-24. What is [H₃O⁺] in a 0.034 M solution of HF at 25 °C? (Kₐ for HF = 7.2 x 10^{-4})
 (a) 4.60 x 10^{-3} M (b) 4.95 x 10^{-3} M
 (c) 0.034 M (d) 0.027 M

17-25. What is the pH of a 0.350 M solution of CH₃COOH at 25 °C? (Kₐ for CH₃COOH = 1.8 x 10^{-5})
 (a) 7.00 (b) 11.4
 (c) 0.0025 (d) 2.60

17-26. What is the pH of a 0.155 M solution of H₂S at 25 °C? (Kₐ for H₂S =1.00 x 10^{-7})
 (a) 13.39 (b) 3.90
 (c) 3.50 (d) 2.88

17-27. What is the pH of a 0.00335 M solution of HNO₂ at 25 °C? (Kₐ for HNO₂ = 4.5 x 10^{-4})
 (a) 2.91 (b) 4.50
 (c) 2.22 (d) 2.99

17-28. What is [OH⁻] in a 0.10 M solution of NaCN at 25 °C? (Kₐ for CN⁻ = 2.5 x 10^{-5})
 (a) 5.00 x 10^{-3} M (b) 6.37 x 10^{-12} M
 (c) 1.57 x 10^{-3} M (d) 4.67 x 10^{-5} M
17-29. What is $[\text{OH}^-]$ in a 0.050 M solution of NH_3 at 25 °C? ($K_b \text{NH}_3 = 1.8 \times 10^{-5}$)
(a) 4.24×10^{-3} M
(b) 6.86×10^{-12} M
(c) 9.40×10^{-4} M
(d) 0.22 M

17-30. What is the pH of a 0.52 M solution of NaCH_3COO at 25 °C? (K_b for $\text{CH}_3\text{COO}^- = 5.6 \times 10^{-10}$)
(a) 9.23
(b) 4.77
(c) 9.37
(d) 10.21

17-31. What is the pH of a 0.144 M solution of NaF at 25 °C? (K_b for $\text{F}^- = 1.4 \times 10^{-11}$)
(a) 8.15
(b) 5.84
(c) 9.12
(d) 7.00

17-32. What is the pOH of a 0.338 M solution of NaClO at 25 °C? (K_b for $\text{ClO}^- = 2.9 \times 10^{-7}$)
(a) 3.27
(b) 3.50
(c) 10.73
(d) 10.50

17-33. We add 12.0 g of NaCN to 500. mL of water at 25 °C. What is the pH of the solution? (K_b for $\text{CN}^- = 2.5 \times 10^{-5}$)
(a) 2.46
(b) 5.83
(c) 11.5
(d) 12.8

17-34. A 0.20 M solution of an acid, HA, has a pH of 3.82 at 25 °C. What is K_a for this acid?
(a) 7.56×10^{-4}
(b) 2.29×10^{-8}
(c) 4.46×10^{-5}
(d) 1.15×10^{-7}

17-35. A 0.040 M solution of an acid, HA, has a pH of 3.02 at 25 °C. What is K_a for this acid?
(a) 2.28×10^{-5}
(b) 2.39×10^{-2}
(c) 5.68×10^{-4}
(d) 2.34×10^{-5}

17-36. A 0.020 M solution of an acid, HA, has a pH of 2.70 at 25 °C. What is K_a for this acid?
(a) 2.21×10^{-4}
(b) 4.55×10^{-8}
(c) 1.99×10^{-4}
(d) 2.00×10^{-3}

17-37. A 0.045 M solution of a base, B, has a pH of 9.20 at 25 °C. What is K_b for this base?
(a) 8.85×10^{-18}
(b) 5.58×10^{-9}
(c) 1.40×10^{-8}
(d) 3.56×10^{-5}

17-38. We make a 0.10 M solution of the diprotic acid, H_2CO_3, at 25 °C. What is $[\text{CO}_3^{2-}]$ in the solution? ($K_{a1} = 4.2 \times 10^{-7}$ and $K_{a2} = 4.8 \times 10^{-11}$)
(a) 4.2×10^{-7} M
(b) 2.0×10^{-4} M
(c) 4.8×10^{-11} M
(d) 2.2×10^{-6} M
17-39. We make a 0.20 M solution of the diprotic acid, \(\text{H}_2\text{S} \), at 25 °C. What is \([\text{S}^{2-}]\) in the solution? \((K_{a1} = 1.0 \times 10^{-7} \text{ and } K_{a2} = 1.3 \times 10^{-13})\)

(a) \(1.3 \times 10^{-13} \text{ M}\)
(b) \(1.6 \times 10^{-7} \text{ M}\)
(c) \(1.0 \times 10^{-7} \text{ M}\)
(d) \(1.4 \times 10^{-4} \text{ M}\)

17-40. Water cannot function as which one of the following?

(a) a Brønsted acid
(b) a Brønsted base
(c) a Lewis acid
(d) a Lewis base

QUESTIONS ON FORMATION CONSTANTS

17-41. We place 0.00010 moles of \(\text{NiCl}_2 \), \(\text{CdCl}_2 \), \(\text{ZnCl}_2 \), and \(\text{CuCl}_2 \) in 1.00 L of a 0.10 M \(\text{NH}_3 \) solution. Which of these metal ions is lowest in concentration in the solution?

\[K_f \text{ for } [\text{Ni(NH}_3)_4]^{2+} = 5.6 \times 10^8\]
\[K_f \text{ for } [\text{Cd(NH}_3)_4]^{2+} = 1.0 \times 10^7\]
\[K_f \text{ for } [\text{Cu(NH}_3)_4]^{2+} = 6.8 \times 10^{12}\]
\[K_f \text{ for } [\text{Zn(NH}_3)_4]^{2+} = 2.9 \times 10^9\]

(a) \(\text{Ni}^{2+}\)
(b) \(\text{Cd}^{2+}\)
(c) \(\text{Cu}^{2+}\)
(d) \(\text{Zn}^{2+}\)

17-42. Calculate \([\text{Cd}^{2+}]\) in a solution that was originally 0.01 M \(\text{Cd}^{2+}\) and 2.0 M \(\text{NH}_3\). \((K_f \text{ for } [\text{Cd(NH}_3)_4]^{2+} = 1.0 \times 10^7)\)

(a) \(0.01 \text{ M}\)
(b) \(4.6 \times 10^{-6} \text{ M}\)
(c) \(8.2 \times 10^{-8} \text{ M}\)
(d) \(6.8 \times 10^{-11} \text{ M}\)

17-43. Calculate \([\text{Ni}^{2+}]\) in a solution that was originally 0.10 M \(\text{Ni}^{2+}\) and 2.0 M \(\text{NH}_3\). \((K_f \text{ for } [\text{Ni(NH}_3)_4]^{2+} = 5.6 \times 10^8)\)

(a) \(2.7 \times 10^{-10} \text{ M}\)
(b) \(0.10 \text{ M}\)
(c) \(1.60 \text{ M}\)
(d) \(8.7 \times 10^{-6} \text{ M}\)

17-44. Calculate \([\text{Cu}^{2+}]\) in a solution that was originally 0.10 M \(\text{Cu}^{2+}\) and 1.0 M \(\text{NH}_3\). \((K_f \text{ for } [\text{Cu(NH}_3)_4]^{2+} = 6.8 \times 10^{12})\)

(a) \(6.8 \times 10^{-12} \text{ M}\)
(b) \(1.1 \times 10^{-12} \text{ M}\)
(c) \(0.60 \text{ M}\)
(d) \(3.2 \times 10^3 \text{ M}\)

17-45. We make up 0.10 M solutions of \([\text{Cd(CN)}_4]^{2-}\), \([\text{Ni(CN)}_4]^{2-}\), \([\text{Ag(CN)}_2]^-\), and \([\text{Fe(CN)}_6]^{2-}\). Which of the following metal ions is highest in concentration?

\[K_f \text{ for } [\text{Cd(CN)}_4]^{2-} = 1.3 \times 10^{17}\]
\[K_f \text{ for } [\text{Ni(CN)}_4]^{2-} = 1.0 \times 10^{31}\]
\[K_f \text{ for } [\text{Ag(CN)}_2]^- = 5.6 \times 10^{18}\]
\[K_f \text{ for } [\text{Fe(CN)}_6]^{2-} = 7.7 \times 10^{36}\]

(a) \(\text{Cd}^{2+}\)
(b) \(\text{Ni}^{2+}\)
(c) \(\text{Ag}^+\)
(d) \(\text{Fe}^{2+}\)
17-46. We make up 0.10 M solutions of \([\text{Cd(CN)}_4]^{2-}\), \([\text{Ni(CN)}_4]^{2-}\), \([\text{Ag(CN)}_2]^{-}\), and \([\text{Fe(CN)}_6]^{2-}\). Which of the following metal ions is lowest in concentration?

- \(\text{K}_f \text{ for } [\text{Cd(CN)}_4]^{2-} = 1.3 \times 10^{17}\)
- \(\text{K}_f \text{ for } [\text{Ni(CN)}_4]^{2-} = 1.0 \times 10^{31}\)
- \(\text{K}_f \text{ for } [\text{Ag(CN)}_2]^{-} = 5.6 \times 10^{18}\)
- \(\text{K}_f \text{ for } [\text{Fe(CN)}_6]^{2-} = 7.7 \times 10^{36}\)

(a) \(\text{Cd}^{2+}\)
(b) \(\text{Ni}^{2+}\)
(c) \(\text{Ag}^{+}\)
(d) \(\text{Fe}^{2+}\)

17-47. Given the following reaction

\[\text{HCN(aq)} + \text{NH}_3(aq) \rightarrow \text{NH}_4^+(aq) + \text{CN}^-(aq)\]

The Brønsted acid on the left is

(a) \(\text{HCN}\)
(b) \(\text{NH}_3\)

and its conjugate base is

(a) \(\text{NH}_4^+\)
(b) \(\text{CN}^-\)

The ammonium ion would be classified as a Brønsted

(a) acid
(b) base

17-48. You are given 0.1 M aqueous solutions of the compounds below. In each case, tell whether the solution will have a pH of 7, a pH less than 7, or a pH greater than 7.

<table>
<thead>
<tr>
<th>Substance</th>
<th>pH of Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) (\text{H}_3\text{PO}_4)</td>
<td>(=7)</td>
</tr>
<tr>
<td>(ii) (\text{K}_2\text{CO}_3)</td>
<td>(=7)</td>
</tr>
<tr>
<td>(iii) (\text{NaHSO}_4)</td>
<td>(=7)</td>
</tr>
<tr>
<td>(iv) (\text{Al(NO}_3)_3)</td>
<td>(=7)</td>
</tr>
<tr>
<td>(v) (\text{KNO}_3)</td>
<td>(=7)</td>
</tr>
<tr>
<td>(vi) (\text{Mg(C}_2\text{H}_3\text{O}_2)_2)</td>
<td>(=7)</td>
</tr>
</tbody>
</table>

17-49. The molecule HOCl is both a weak Brønsted acid and an oxidizing agent. As an acid it gives the base OCl\(^-\) on ionization.

\[\text{HOCl(aq)} + \text{H}_2\text{O}(l) \rightleftharpoons \text{OCl}^-(aq) + \text{H}_3\text{O}^+(aq)\]

(i) If the pH of a 0.015 M solution of the acid is 4.64, what is the concentration of the hypochlorite ion, OCl\(^-\), in solution?

(a) \(4.37 \times 10^{-4}\)
(b) \(2.29 \times 10^{-5}\)
(c) \(4.37 \times 10^{4}\)
(d) \(4.38 \times 10^{10}\)

(ii) What is the value of \(K_a\) for the acid?

(a) \(2.30 \times 10^{-5}\)
(b) \(5.25 \times 10^{-10}\)
(c) \(1.53 \times 10^{-3}\)
(d) \(3.50 \times 10^{-8}\)
17-50. Pyridine, an organic molecule, is a very common weak base.
\[\text{C}_5\text{H}_5\text{N(aq)} + \text{H}_2\text{O(l)} \rightleftharpoons \text{C}_5\text{H}_5\text{NH}^+(aq) + \text{OH}^-(aq) \]
Assume you have a 0.0213 M aqueous solution of pyridine, C\textsubscript{5}H\textsubscript{5}N. The K\textsubscript{b} value for the compound is 1.5 x 10-9.
(i) What is the concentration of OH- in the solution?
(a) 2.13 x 10-2 M (b) 5.65 x 10-6 M
(c) 1.77 x 10-9 M (d) 3.20 x 10-11 M
(ii) What is the pH of the solution?
(a) 12.33 (b) 8.75
(c) 5.25 (d) 10.50

17-51. The molecule phenol is a weak Brønsted acid often used in disinfectants. As an acid it gives the base C\textsubscript{6}H\textsubscript{5}O- on ionization.
\[\text{C}_6\text{H}_5\text{OH(aq)} + \text{H}_2\text{O(l)} \rightleftharpoons \text{C}_6\text{H}_5\text{O}^-(aq) + \text{H}_3\text{O}^+(aq) \]
(i) If the pH of a 0.015 M solution of the acid is 5.86, what is the concentration of the hydronium ion, H\textsubscript{3}O+, in solution?
(a) 1.50 x 10-1 (b) 7.24 x 10-9
(c) 1.38 x 10-6 (d) 5.86 x 10-6
(ii) What is the value of K\textsubscript{a} for the acid?
(a) 1.50 (b) 1.3 x 10-10
(c) 2.29 x 10-9 (d) 9.20 x 10-5

17-52. For each solution below, tell if the pH is less than 7, equal to 7, or greater than 7.

<table>
<thead>
<tr>
<th>SOLUTION</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) 0.10 M HNO\textsubscript{3}</td>
<td></td>
</tr>
<tr>
<td>(ii) 0.012 M KOH</td>
<td></td>
</tr>
<tr>
<td>(iii) 0.15 M acetic acid</td>
<td></td>
</tr>
<tr>
<td>(iv) 0.56 M Na\textsubscript{2}CO\textsubscript{3}</td>
<td></td>
</tr>
<tr>
<td>(v) 0.45 M KBr</td>
<td></td>
</tr>
<tr>
<td>(vi) 0.15 M (NH\textsubscript{4})\textsubscript{2}S</td>
<td></td>
</tr>
</tbody>
</table>

17-53. What are the pH and the ion concentrations in a solution of 0.0015 M NaOH?

<table>
<thead>
<tr>
<th>pH</th>
<th>[OH-]</th>
<th>[H\textsubscript{3}O+]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 11.18</td>
<td>6.7 x 10-3</td>
<td>1.5 x 10-12</td>
</tr>
<tr>
<td>(b) 2.82</td>
<td>1.5 x 10-3</td>
<td>6.7 x 10-12</td>
</tr>
<tr>
<td>(c) 11.18</td>
<td>1.5 x 10-3</td>
<td>6.7 x 10-12</td>
</tr>
<tr>
<td>(d) 1.50</td>
<td>3.16 x 10-13</td>
<td>3.16 x 10-2</td>
</tr>
</tbody>
</table>
17-54. What are the pH and ion concentrations in a solution of 0.10 M sodium formate, NaCHO₂⁻? \(K_b \) for the formate ion, HCO₂⁻ is \(5.6 \times 10^{-11} \).

<table>
<thead>
<tr>
<th>pH</th>
<th>[Na⁺]</th>
<th>[CHO₂⁻]</th>
<th>[OH⁻]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>5.63</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>(b)</td>
<td>8.37</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>(c)</td>
<td>8.22</td>
<td>0.050</td>
<td>0.050</td>
</tr>
<tr>
<td>(d)</td>
<td>5.63</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

17-55. If you have a 0.15 M solution of Na₂CO₃, what are the concentrations of H₃O⁺ and OH⁻ and what is the pH of the solution? \(K_b \) for CO₃²⁻ is \(2.1 \times 10^{-4} \).

<table>
<thead>
<tr>
<th>[H₃O⁺]</th>
<th>[OH⁻]</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>5.61 x 10⁻³</td>
<td>1.78 x 10⁻¹²</td>
</tr>
<tr>
<td>(b)</td>
<td>1.78 x 10⁻¹²</td>
<td>5.61 x 10⁻³</td>
</tr>
<tr>
<td>(c)</td>
<td>5.61 x 10⁻³</td>
<td>1.78 x 10⁻¹²</td>
</tr>
<tr>
<td>(d)</td>
<td>1.78 x 10⁻¹²</td>
<td>5.61 x 10⁻³</td>
</tr>
</tbody>
</table>

17-56. The pH of a solution made by dissolving 0.588 g of the weak organic acid phenol, C₆H₅OH, in 500. mL of water is 5.90. What is the value of \(K_a \) for the acid?

\[
C_6H_5OH(aq) + H_2O(l) \rightleftharpoons C_6H_5O^-(aq) + H_3O^+(aq)
\]

<table>
<thead>
<tr>
<th>([H_3O^+])</th>
<th>([OH^-])</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 5.0 x 10⁻¹⁵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) 2.5 x 10⁻¹⁰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) 1.0 x 10⁻⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) 1.3 x 10⁻¹⁰</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANSWERS — CHAPTER 17

1. b 11. b 21. c
2. a 12. d 22. b
3. d 13. b 23. c
4. d 14. c 24. a
5. c 15. d 25. d
6. a 16. a 26. b
7. b 17. b 27. d
8. a 18. c 28. c
9. b 19. a 29. c
10. a 20. d 30. a
31. a 41. c 51. c, b
32. b 42. d 52. <7, >7, <7, >7, =7, >7
33. c 43. a 53. c
34. d 44. b 54. b
35. d 45. a 55. b
36. a 46. b 56. d
37. b 47. a, b, a
38. c 48. <7, >7, <7, <7, =7, >7
39. a 49. b, d
40. c 50. b, b