Importance of Gases

- Airbags fill with N_2 gas in an accident.
- Gas is generated by the decomposition of sodium azide, NaN$_3$.
 \[2 \text{NaN}_3 \rightarrow 2 \text{Na} + 3 \text{N}_2 \]

Hot Air Balloons — How Do They Work?

Three States of Matter

General Properties of Gases

- There is a lot of “free” space in a gas.
- Gases can be expanded infinitely.
- Gases occupy containers uniformly and completely.
- Gases diffuse and mix rapidly.

Properties of Gases

Gas properties can be modeled using math. Model depends on—

- $V =$ volume of the gas (L)
- $T =$ temperature (K)
- $n =$ amount (moles)
- $P =$ pressure (atmospheres)
Pressure

Pressure of air is measured with a BAROMETER (developed by Torricelli in 1643).

Pressure

Hg rises in tube until force of Hg (down) balances the force of atmosphere (pushing up).

P of Hg pushing down related to
• Hg density
• column height

Pressure

Column height measures P of atmosphere
• 1 standard atm = 760 mm Hg = 29.9 inches = about 34 feet of water

SI unit is PASCAL, Pa, where 1 atm = 101.325 kPa

IDEAL GAS LAW

P V = n R T

Brings together gas properties. Can be derived from experiment and theory.

Boyle’s Law

If n and T are constant, then PV = nRT = k

This means, for example, that P goes up as V goes down.

Boyle’s Law

A bicycle pump is a good example of Boyle’s law.
As the volume of the air trapped in the pump is reduced, its pressure goes up, and air is forced into the tire.
Charles's Law

If n and P are constant, then

$$V = \frac{(nR)}{P}T = kT$$

V and T are directly related.

Avogadro's Hypothesis

Equal volumes of gases at the same T and P have the same number of molecules.

$$V = n \frac{(RT)}{P} = kn$$

V and n are directly related.

Twice as many molecules

Balloons immersed in liquid N_2 (at -196 °C) will shrink as the air cools (and is liquefied).
Using PV = nRT

How much N\(_2\) is req'd to fill a small room with a volume of 960 cubic feet (27,000 L) to P = 745 mm Hg at 25 °C?

\[R = 0.082057 \text{ L} \cdot \text{atm} / \text{K} \cdot \text{mol} \]

Solution

1. Get all data into proper units
 - \(V = 27,000 \text{ L} \)
 - \(T = 25 \text{ °C} + 273 = 298 \text{ K} \)
 - \(P = 745 \text{ mm Hg} \) (1 atm = 760 mm Hg)

2. \(R = 0.0821 \text{ L} \cdot \text{atm} / \text{K} \cdot \text{mol} \)

3. \(n = \frac{PV}{RT} \)

4. \(n = 0.98 \text{ atm} \times \frac{2.7 \times 10^4 \text{ L}}{0.0821 \text{ L} \cdot \text{atm} / \text{K} \cdot \text{mol} \times 298 \text{ K}} = 1.1 \times 10^3 \text{ mol (or about 30 kg of gas)} \)

Gases and Stoichiometry

\(2 \text{H}_2\text{O}_2(\text{liq}) \rightarrow 2 \text{H}_2\text{O}(\text{g}) + \text{O}_2(\text{g}) \)

Decompose 1.1 g of H\(_2\)O\(_2\) in a flask with a volume of 2.50 L. What is the pressure of O\(_2\) at 25 °C? Of H\(_2\)O?

Solution

1. \(\text{Calculate moles of H}_2\text{O}_2 \text{ and then moles of O}_2 \text{ and H}_2\text{O}. \)
2. \(\text{Finally, calc. P from n, R, T, and V.} \)
Gases and Stoichiometry

\[2 \text{H}_2\text{O}_2(\text{liq}) \rightarrow 2 \text{H}_2\text{O}(g) + \text{O}_2(g) \]

What is \(P \) of \(\text{H}_2\text{O} \)? Could calculate as above. But recall Avogadro’s hypothesis.

\(V \propto n \) at same \(T \) and \(P \)

\(P \propto n \) at same \(T \) and \(V \)

There are 2 times as many moles of \(\text{H}_2\text{O} \) as moles of \(\text{O}_2 \). \(P \) is proportional to \(n \).

Therefore, \(P \) of \(\text{H}_2\text{O} \) is twice that of \(\text{O}_2 \).

\[P \text{ of } \text{H}_2\text{O} = 0.32 \text{ atm} \]

Dalton’s Law of Partial Pressures

\[2 \text{H}_2\text{O}_2(\text{liq}) \rightarrow 2 \text{H}_2\text{O}(g) + \text{O}_2(g) \]

\[0.32 \text{ atm} \]

\[0.16 \text{ atm} \]

What is the total pressure in the flask?

\[P_{\text{total in gas mixture}} = P_A + P_B + ... \]

Therefore,

\[P_{\text{total}} = P(\text{H}_2\text{O}) + P(\text{O}_2) = 0.48 \text{ atm} \]

Dalton’s Law: total \(P \) is sum of PARTIAL pressures.

Dalton’s Law

John Dalton

1766-1844

GAS DENSITY

Screen 12.6

\[\text{PV} = n\text{RT} \]

\[\frac{n}{V} = \frac{P}{RT} \]

\[\frac{m}{M \cdot V} = \frac{P}{RT} \]

where \(M \) = molar mass

\[d = \frac{m}{V} = \frac{PM}{RT} \]

\(d \) and \(M \) proportional

USING GAS DENSITY

The density of air at 15 °C and 1.00 atm is 1.23 g/L. What is the molar mass of air?

1. Calc. moles of air.

\[V = 1.00 \text{ L} \quad P = 1.00 \text{ atm} \quad T = 288 \text{ K} \]

\[n = \frac{PV}{RT} = 0.0423 \text{ mol} \]

2. Calc. molar mass

\[\text{mass/mol} = \frac{1.23 \text{ g}}{0.0423 \text{ mol}} = 29.1 \text{ g/mol} \]