Introduction

A degree in physics will help to prepare you for many careers in science, engineering, and education. Job opportunities vary according to degree level. Research in physics often impacts other fields such as engineering and medicine and benefits mankind. If you enjoy the sciences and helping people, a career in physics may be very rewarding to you!

“Nothing in life is to be feared. It is only to be understood.” – Marie Curie

“No amount of experimentation can ever prove me right; a single experiment can prove me wrong.” – Albert Einstein

Functional Skill Set for Physics Majors:

Organizes, analyzes and interprets scientific data; operates and uses information derived for computers; possesses an aptitude for accurate details; questions and solves problems proficiently; reads, writes, memorizes and speaks proficiently; possesses strong background in mathematics; and possesses good vision and manual dexterity.

Define research, develop & write research proposals, measure distances/relationships, and design equipment.

Develop research models, review scientific literature, perform calculations, and identify/classify materials.

Establish hypotheses, summarize research findings, mathematical modeling, and observe data.

Gather/analyze data, inform, explain, instruct, maintain records, and establish experimental designs.

Evaluate ideas, prepare technical reports, utilize math formulas, and use instruments.

See relationships among factors and draw meaningful conclusions.
Career Titles for Physics Majors:

- Aerodynamist
- Airline Dispatcher
- Architect
- Astrophysicist
- Biophysicists
- Chemical
- Computer Programmer
- Consultant
- Crime Laboratory Analyst
- Cryogenics
- Curator/Natural History
- Electricity and Magnetism
- Electronic
- Engineer
- Experimental
- Geodetic Computer
- Health
- Industrial Health Engineer
- Information Scientist
- Instrumental Technician
- Laser
- Librarian, Special
- Low Temperature
- Manufacturers' Rep
- Mechanical Engineering Technician
- Medical Lab Technician
- Metallurgist
- Meteorologist
- Molecular
- Nuclear Technicians
- Optics
- Particle
- Photogrammetrist
- Physical Scientist
- Physicist Technician
- Safety Manager
- Science Technician
- Solid Earth
- Space & Planetary
- Acoustics

- Agronomist
- Airplane Pilot/Navigator
- Astronomer
- Atomic
- Callistics Experts
- College Teacher
- Computer-Systems Engineer
- Cosmologist
- Criminalist
- Crystallographers
- Editor (Science)
- Electro-Magnetic
- Elementary Particle
- Environmental Scientist
- Fluids
- Geographer
- Geophysicists
- Hydrologist
- Industrial Hygienist
- Instrument Maker
- Laboratory Tester
- Laser Technician
- Light
- Management Trainee
- Mathematician
- Medical
- Medical Technologist
- Meteorologist
- Nuclear
- Oceanographer
- Optometrist
- Pharmacologist
- Photo-optics Technician
- Physician
- Plasma
- Protogrammetric Engineer
- Rheologists
- Salesperson, Scientific Apparatus
- Seismologist
- Solid State
- Computer Specialist
• Fire Protection Engineer
• Industrial Engineer
• Production Planner
• Safety Engineer
• Ceramic Engineer
• Material and Metallurgical Engineer
• Materials Handling Engineer
• Marine Engineer
• Nuclear Engineer
• Ship Builder
• Teacher, Science
• Temperature
• Thermodynamics
• Writer, Technical
• Stress Analyst
• Technical Secretary
• Theoretical
• Vacuum
• Zoologist
• Manufacturing Engineer
• Sales Engineer
• Product Engineer
• Applications Engineer
• Design Engineer
• Environmental Engineer
• Plant Engineer
• Mathematics and Physics Teacher
• Medical Products Designer
• Biotechnologist
• Petroleum Engineer
• Construction Inspector
• Structural Engineer
• Urban Planning Engineer
• Controls Engineer
• Fiberoptics Engineer
• Robotics Engineer
• Bioengineer
• Forest Engineer
• Sanitary Engineer
• Physicist
• Physics Researcher
• Test Engineer
• Process Engineer
• Public/Private School Teacher
• College Professor
• Environmental Analyst
• Systems Engineer
• Laser Engineer
• Project Manager
• Applied Physicist
• Software Engineer
• Lab Technician
• Forensic Scientist
• Quality Control Manager
• Automotive Engineer
• Stratigrapher
• Technical Consultant
• Technical Salesperson
• Aerospace Nondestructive Testing
• Cardiac Imaging Researcher
• Geodesist
• High-Tech Designer, Oil Industry
• Laboratory Technician
• Lawyer, Technology Specialty
• National Laboratory Research Admin.
• Nuclear Magnetic Resonance Lab Tech
• Nuclear Physicist
• Nuclear Power Plant Project Manager
• Optical Medical Devices Designer
• Particle Accelerator Operations Analyst
• Research Assistant
• Satellite Date Analyst
• Satellite Missions Analyst
• Science Writer
• Ergonomist
• Health Engineer
• Quality Control Engineer
• Maintenance Superintendents
• Mechanical Engineer
• Aerospace Engineer
• Naval Engineer
- Nuclear Safety Engineer
- Biomedical Engineer
- Chemical Engineer
- Civil Engineer
- Geotechnical Engineer
- Transportation Engineer
- Water Resources Engineer
- Computer Engineer
- Electrical Engineer
- Illuminating Engineer
- Agricultural Engineer
- Pollution Control Engineer
- Water/Wastewater Plant Operator

Some Organizations that Typically Employ Physics Majors:

Aerospace Industry
Computer Firms
Dept. of Labor
Energy and Fuels
Farm Equipment Manufacturing
Pulp and Paper Industry
Astronaut Corps
Chemical Companies
Corporations such as IBM, Allied, Engineering Firms
National Transportation Safety Board
Oilfields
Power Plants
School Boards
US Dept of Agriculture
US Dept of Defense
US Dept of the Interior
Federal Government
Weather Bureaus
Professional and Technical Journal
Business and Industry
Mining
Science Museums
Nonprofit Foundations
Television and radio stations
Atomic and nuclear labs
Government laboratories
Industry including biotechnology, environment, pharmaceuticals
Architectural Firms
Dept of Transportation
Engineering Consulting Firms

Heating, Ventilating and Air-conditioning Industry
Marine Industry
Petroleum & Gas Companies
Telecommunications
Waste Water Management
Army, Navy, Coast Guard, Air Force
Carrier & Dow Chemical
Electronic Firms
Museums
National Oceanic & Atmospheric Administration
Patent Law Firms
Research & Development Firms
State & Local Governments
US Dept of Commerce
US Dept of Energy
Manufacturing/Processing Firms
Utility Companies
Airports
Hospitals
Public/Private Schools
Colleges/Universities
Air, Bus, Rail Lines
Scientific Laboratories
Planetariums
Observatories
Nonprofit Research Centers
Automobile Industry
Space Research (NASA)
Industry including health physics instrumentation, nuclear power, nuclear weapons, radioisotope
products, nuclear accelerators and reactors and environmental firms.
Schools for the blind and/or deaf industry
Publishing companies (books, magazines and videos)
Libraries
Industry including medical scanners; eyeglasses, binoculars and microscopes; lasers; holography; display technologies; x-ray; ultraviolet spectra; and fiber optics.

Industry including petroleum, mining, exploration and consulting firms
Electronics industry including communications, automobile, computer and navigation and guidance systems
Industry including nuclear weapons, nuclear accelerators and reactors, nuclear instrumentation and radioisotope products
Industry including automobile, jet engine and space vehicle design, and controlled fusion devices
Government agencies

Start a Strategic Plan:

Gain experience through internships/co-ops.
Complete certification/licensure through professional organizations.
Gain knowledge about the field through informational interviews with professionals.
Develop work habits that are systematic, precise and patient.
Develop a strong computer background.
Gain experience using scientific instruments and equipment.
Obtain experience working with electronics and computers.
Request job listings from the American Institute of Physics
Earn Ph.D. and certification by the American Board of Health Physics (ABHP) for top college/university teaching and advanced research and administrative positions.
Complete M.S. and certification by the ABHP for professional health physics positions.
Specialize in health physics and obtain certification by the National Registry of Radiation Protection Technologists for technician positions.
Acquire knowledge of government standards and regulations.
Acquire information about state licensure required for technicians employed in hospitals or certain medical areas.
Gain experience as laboratory assistant, hospital orderly, or volunteer at a hospital clinic.
Specialize in geophysics or minor in geology.
Develop good background in mathematics and chemistry, engineering and physics.
Maintain good physical condition.
Gain experience working with young people through volunteering, tutoring or working with after school programs, summer camps, etc.
Earn bachelor’s degree (master’s degree for teaching advanced science courses).
Acquire teaching certification/licensure
Visit schools and classrooms.
Put together files of science experiments and activities.
Become skilled in the use of computers.
Acquire excellent knowledge of oral and written English.
Get involved in a research project.
Take undergraduate coursework in electricity, magnetism, quantum mechanics, and electronics.
Get involved in independent optics project during senior year.
Earn a Ph. D. for college/university teaching and advanced research and management positions.
Develop excellent laboratory skills.
Acquire strong mathematics and chemistry background.
Gain experience through work or volunteering in a planetarium, observatory or science museum.
Contact the American Astronomical Society for more information.
Take courses in psychology and physiology, speech and hearing, vibration, radiation therapy and light and optics.
Earn a master’s degree in physics (preferred by industry).
Gain knowledge of political science, sociology and law.
Maintain an interest in music, the arts and humanities.
Join professional associations that promote the interest of physics.
Acquire excellent oral and written communication skills.
Gain experience through summer employment, co-op and/or internship.
Gain experience with tools, electronics and machinery.
Learn government job application process for positions in federal, state or local government.

Professional Organizations and Associations for Physics Majors:

American Institute of Aeronautics & Astronautics
1801 Alexander Bell Drive
Reston, VA 20191-4344

American Institute of Chemical Engineers
345 East 47th Street
New York, NY 10017-2395

American Society of Mechanical Engineers
22 Law Drive, PO Box 2900
Farefield, NJ 07007-2900

National Society of Professional Engineers
1420 King St.
Alexandria, VA 22314-2715

American Institute of Industrial Engineers, Inc.
25 Technology Park
Norcross, GA 30092
American Society of Civil Engineers
1801 Alexander Bell Drive
Reston, VA 20191-4400

National Institute of Electrical and Electronics Engineers
445 Hoes Lane
Piscataway, NJ 08855-1331

American Institute of Physics http://www.aip.org

National Aeronautics and Space Administration
http://www.nasa.gov/home/index.html

American Physical Society http://www.aps.org/

Institute of Physics http://www.iop.org/

The Geophysical Union http://www.agu.org/

American Society of Mechanical Engineers (ASME)
http://www.asme.org/jobs/

Revised 12-7-10
PHYSICS
What can I do with this major?

<table>
<thead>
<tr>
<th>AREAS</th>
<th>EMPLOYERS</th>
<th>STRATEGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOUSTICAL PHYSICS</td>
<td>Colleges and universities</td>
<td>Supplement program with courses in engineering, environmental science, urban planning, remote sensing, physiology, performing arts, audio broadcasting, speech communication, film production, or other areas of interest.</td>
</tr>
<tr>
<td>Development</td>
<td>Military</td>
<td>Seek internship experience in your specialty area.</td>
</tr>
<tr>
<td>Testing</td>
<td>Government laboratories</td>
<td>Stay abreast of federal, state, and local environmental regulations for the environmental impact positions.</td>
</tr>
<tr>
<td>Consulting</td>
<td>Nonprofit research centers</td>
<td>Become familiar with technologies used to measure/monitor noise levels.</td>
</tr>
<tr>
<td>Administration</td>
<td>Industry e.g., electronics, building design, medical instrumentation, communications, engineering, noise pollution, petroleum, sound recording, film production</td>
<td>Obtain a graduate degree for additional opportunities in industry and education.</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTRONOMY</td>
<td>Observatories</td>
<td>Obtain experience through part-time or voluntary position in a planetarium, observatory, or science museum.</td>
</tr>
<tr>
<td>Research</td>
<td>Laboratories</td>
<td>Cultivate broad knowledge of astronomy and speaking skills for jobs working with the public.</td>
</tr>
<tr>
<td>Consulting</td>
<td>Planetariums</td>
<td>Develop strong writing skills for preparing scientific reports.</td>
</tr>
<tr>
<td>Writing</td>
<td>Science museums</td>
<td>Seek undergraduate research opportunities with professors in the field.</td>
</tr>
<tr>
<td>Public Relations</td>
<td>Nonprofit foundations</td>
<td>Develop a specialty area of expertise such as remote sensing, instrumentation, computer applications, etc.</td>
</tr>
<tr>
<td>Education</td>
<td>Colleges and universities</td>
<td>Obtain a Ph.D. for teaching and advanced research positions.</td>
</tr>
<tr>
<td></td>
<td>Industry e.g., aerospace, scientific supply, computer software, remote sensing, communications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Federal government: National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, Federal Aviation Administration, U.S. Naval Observatory, U.S. Naval Research Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Some areas of specialization follow. Most students specialize at the graduate level.
<table>
<thead>
<tr>
<th>AREAS</th>
<th>EMPLOYERS</th>
<th>STRATEGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTROPHYSICS</td>
<td>Research centers</td>
<td>Seek lab courses for direct experience with equipment and observatory tools.</td>
</tr>
<tr>
<td></td>
<td>Colleges and universities</td>
<td>Participate in research with scholars in the field.</td>
</tr>
<tr>
<td></td>
<td>Observatories</td>
<td>Complete an internship with a research organization or related industry.</td>
</tr>
<tr>
<td></td>
<td>Planetariums</td>
<td>Develop computer and oral and written communication skills.</td>
</tr>
<tr>
<td></td>
<td>Aerospace industry</td>
<td>Learn to be effective in both independent research role and team environment.</td>
</tr>
<tr>
<td></td>
<td>Scientific supply industry</td>
<td>Earn an advanced degree for most teaching and research positions.</td>
</tr>
<tr>
<td></td>
<td>Federal government: Military, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration (NOAA), Federal Aviation Administration (FAA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Airways</td>
<td></td>
</tr>
<tr>
<td>BIOPHYSICS</td>
<td>Colleges and universities</td>
<td>Biophysics is considered an interdisciplinary field at the undergraduate level; most students prepare to enter by majoring in physics, chemistry, or mathematics with supplementary courses in biology or by majoring in biology, biochemistry or molecular biology with supplementary courses in chemistry, physics, and mathematics.</td>
</tr>
<tr>
<td></td>
<td>Medical and dental schools</td>
<td>Plan to specialize in an area such as experimental biophysics or computational biophysics and choose courses accordingly.</td>
</tr>
<tr>
<td></td>
<td>Government laboratories</td>
<td>Seek research experience through work with a professor or internships.</td>
</tr>
<tr>
<td></td>
<td>Nonprofit research centers</td>
<td>Earn a bachelor’s degree for most technician positions.</td>
</tr>
<tr>
<td></td>
<td>Industry e.g., biotechnology, environment, pharmaceuticals, food science, toxicology</td>
<td>Obtain advanced degree for higher-level positions in industry in academia.</td>
</tr>
<tr>
<td></td>
<td>Hospitals</td>
<td></td>
</tr>
<tr>
<td>CHEMICAL PHYSICS</td>
<td>Colleges and universities</td>
<td>Take courses in physics, chemistry, and mathematics for graduate school preparation in this interdisciplinary field.</td>
</tr>
<tr>
<td></td>
<td>Government laboratories</td>
<td>Seek undergraduate research experience to develop laboratory and computer skills.</td>
</tr>
<tr>
<td></td>
<td>Government agencies</td>
<td>Gain research experience in both physics and chemistry.</td>
</tr>
<tr>
<td></td>
<td>Industry</td>
<td>Become familiar with the various forms of spectroscopy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Obtain advanced degree for more opportunities in industry, research, or education.</td>
</tr>
<tr>
<td>AREAS</td>
<td>EMPLOYERS</td>
<td>STRATEGIES</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CONDENSED MATTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic and Applied Research</td>
<td>Government laboratories</td>
<td>Develop strong mathematical, chemistry, and computer science skills.</td>
</tr>
<tr>
<td>Development</td>
<td>Nonprofit research centers</td>
<td>Seek research experience through internships or by assisting faculty with projects.</td>
</tr>
<tr>
<td>Consulting</td>
<td>Colleges and universities</td>
<td>Acquire advanced degree for opportunities in industry, research, or education.</td>
</tr>
<tr>
<td>Administration</td>
<td>Electronics industry e.g., microprocessors, magnetic imaging, communications, automobile, navigation/guidance systems</td>
<td>Become familiar with various forms of characterization techniques such as optical and electron spectroscopy and neutron scattering.</td>
</tr>
<tr>
<td></td>
<td>Government agencies e.g., National Aeronautics and Space Administration, Department of Defense</td>
<td></td>
</tr>
<tr>
<td>AREAS</td>
<td>EMPLOYERS</td>
<td>STRATEGIES</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>MEDICAL/HEALTH PHYSICS</td>
<td>Colleges and universities, Government laboratories, Government agencies e.g., Department of Defense,</td>
<td>Gain experience with air and water testing techniques and analysis and radiation detection instruments.</td>
</tr>
<tr>
<td>Basic and Applied Research</td>
<td>Department of Energy, Nuclear Regulatory Commission, Department of Health and Human Services, Nonprofit research centers,</td>
<td>Develop strong communication skills for training radiation workers and members of the general public and for collaborating with physicians in healthcare settings.</td>
</tr>
<tr>
<td>Development</td>
<td>Industry e.g., medical instrumentation, nuclear power, nuclear accelerator, food sterilization, petroleum, Environmental firms, Hospitals, clinics, medical centers</td>
<td>Maintain current knowledge of government standards and regulations.</td>
</tr>
<tr>
<td>Clinical Service</td>
<td></td>
<td>Learn medical uses of radiation for work in the healthcare industry.</td>
</tr>
<tr>
<td>Consulting</td>
<td></td>
<td>Seek certification from the National Registry of Radiation Protection Technologists for some positions.</td>
</tr>
<tr>
<td>Administration</td>
<td></td>
<td>Complete a master's degree and certification by the American Board of Health Physics (ABHP) for health physicist positions.</td>
</tr>
<tr>
<td>Monitoring</td>
<td></td>
<td>Earn a Ph.D. and certification by the American Board of Health Physics (ABHP) for top university teaching, research, and administrative positions.</td>
</tr>
<tr>
<td>Enforcement</td>
<td></td>
<td>Gain experience at a hospital or clinic to prepare for work in healthcare settings; clinical residency training may be required.</td>
</tr>
<tr>
<td>NUCLEAR PHYSICS</td>
<td>Colleges and universities, Military, Industry e.g., security/weapons, nuclear accelerators, nuclear reactors, nuclear instrumentation, radioisotope products, transportation, healthcare, environmental protection, food irradiation, Government laboratories and research centers, Government agencies e.g., Department of Defense, Department of Energy</td>
<td>Acquire a strong mathematics, computer science, and chemistry background.</td>
</tr>
<tr>
<td>Basic and Applied Research</td>
<td></td>
<td>Choose a theoretical or experimental track.</td>
</tr>
<tr>
<td>Development</td>
<td></td>
<td>Seek internship experience in your specialty area.</td>
</tr>
<tr>
<td>Consulting</td>
<td></td>
<td>Pursue master's degree or Ph.D. for advanced positions in industry.</td>
</tr>
<tr>
<td>Instrumentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Law</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations and Maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AREAS</td>
<td>EMPLOYERS</td>
<td>STRATEGIES</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>OPTICAL PHYSICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic and Applied Research</td>
<td>Colleges and universities</td>
<td>Gain experience in the optics field through internships or research with professors.</td>
</tr>
<tr>
<td>Development</td>
<td>Government laboratories</td>
<td>Supplement program with courses in electricity, magnetism, quantum mechanics, and electronics.</td>
</tr>
<tr>
<td>Consulting</td>
<td>Nonprofit research centers</td>
<td>Obtain a master’s degree for positions in industry.</td>
</tr>
<tr>
<td>Administration</td>
<td>Industry e.g., medical scanners, eyeglasses, binoculars, microscopes, lasers, holography, display technologies, x-ray, ultraviolet spectra, fiber optics</td>
<td>Understand lasing and optical media.</td>
</tr>
<tr>
<td></td>
<td>Federal agencies e.g., NASA, Department of Energy, Department of Defense</td>
<td></td>
</tr>
<tr>
<td>PARTICLE/HIGH ENERGY PHYSICS</td>
<td>Government laboratories</td>
<td>Acquire a strong mathematics, computer science, and chemistry background.</td>
</tr>
<tr>
<td>Basic and Applied Research</td>
<td>Nonprofit research centers</td>
<td>Choose a theoretical or experimental track.</td>
</tr>
<tr>
<td>Development</td>
<td>Colleges and universities</td>
<td>Seek internship experience in your specialty area.</td>
</tr>
<tr>
<td>Consulting</td>
<td></td>
<td>Pursue Ph.D. for advanced positions in academia.</td>
</tr>
<tr>
<td>Instrumentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations and Maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIENCE EDUCATION</td>
<td>Public school systems, K-12</td>
<td>Develop excellent communication skills, verbal and written.</td>
</tr>
<tr>
<td>Teaching</td>
<td>Private schools, K-12</td>
<td>Gain experience working with age group of interest through volunteering and tutoring.</td>
</tr>
<tr>
<td>Computer Software Development</td>
<td>Publishing companies: books, magazines, videos</td>
<td>Become skilled in the use of computers and laboratory equipment.</td>
</tr>
<tr>
<td>Educational Research</td>
<td>Software developers</td>
<td>Maintain current knowledge of state and national legislation regarding teacher licensure.</td>
</tr>
<tr>
<td>Writing and Editing</td>
<td>Libraries</td>
<td>Acquire appropriate state teacher certification for K-12 teaching opportunities.</td>
</tr>
<tr>
<td>Library and Information Sciences</td>
<td></td>
<td>Seek advanced degree required for specialists, education administration, college teaching, and other professional positions.</td>
</tr>
</tbody>
</table>
GENERAL INFORMATION

- Physicists are interested in solving complex, technical problems.
- Visit government laboratories or research centers to learn more about opportunities in the field. Schedule informational interviews to learn about the profession and specific career paths.
- Join relevant professional associations. Attend meetings and stay up-to-date on research/publications.
- Acquire excellent oral and written communication skills.
- Gain experience using scientific instruments and equipment. Computer skills are critical.
- Participate in summer research institutes. Submit research to local poster competitions or research symposiums.
- A willingness to relocate is helpful due to limited opportunities in specialized areas.
- A bachelor’s degree will qualify for positions as research assistants, high-level technicians, or computer specialists, as well as nontechnical work in publishing or sales.
- An undergraduate degree also provides a solid background for pursuing advanced degrees in other employment areas such as law, business, or accounting.
- A graduate degree and post-graduate experience will allow for more responsibility and advancement in the field of physics.
- An earned doctorate is required for college or university teaching, advanced research, and administrative positions.
- A bachelor’s degree and state teacher certification are required for K-12 teaching opportunities.
- Become familiar with government job application process for positions in federal, state, or local government.