The Four Color Theorem

Theorem (4CT)
Every map in the plane (or on the sphere) can be colored with just four colors such that no two adjacent countries have the same color.

- First stated by Francis Guthrie in 1852.
- First proofs submitted by Kempe in 1879 and Tait in 1880.
- Both proofs were shown to be incorrect, more than ten years after they were submitted.

Computer Proofs

- First correct proof by Haken and Appel used computers to verify the 4CT in 1976.
- Proof uses 1,476 configurations each checked by computer for reducibility and unavoidability.
- Robertson, Sanders, Seymour, and Thomas simplified Haken and Appel’s proof in 1997.
- Proof uses 633 configurations each checked by computer for reducibility and unavoidability.
- Gonthier uses Coq proof assistant to write a formal proof of the 4CT in 2005.
- This proof follows the Robertson, Sanders, Seymour, and Thomas’s proof.
- As a formal proof, one only needs to believe the Coq software is error free.
- While these proofs are generally excepted, they are difficult to understand without considerable study.

An Equivalent Reformation

We would still like an alternate proof of the 4CT. One that does not rely on computers or a large number of cases to understand.

Theorem (Tait, 1880)
A graph is 4-colorable if and only if the edges can be colored with 3 colors such that no two edges which share an endpoint have the same color.

This can be shown by taking the 4 colors to be elements of \mathbb{Z}_2^2.

Theorem (Vector Association Theorem)
Given any two associations of the cross product $v_1 \times v_2 \times \cdots \times v_n$, there is an assignment of vectors i, j, and k such that both products are equal and non-zero.

It should be surprising that what seems like a question about combinatorics is equivalent to a question about algebra.

Theorem (Kaufman, 1990)
The Four Color Theorem is equivalent to the Vector Association Theorem.

Since the Vector Association Theorem is about associativity, Thompson’s Group F is a natural place to look for an alternate proof of the 4CT.

Thompson’s Group F

An element of Thompson’s Group F is a pair (L, R) of two binary trees each with the same number of leaves. Thompson’s Group F is generated by the elements x_i, for $i \geq 0$.

$$x_0 = (\lambda, \lambda), \quad x_1 = (\lambda, \lambda), \quad x_i = (\lambda, \lambda)$$

To compute the product fg, you add carets to both trees of f and g until the center tree’s match, the product is then the new left and right trees of f and g.

$$(\lambda, \lambda)(\lambda, \lambda) = (\lambda, \lambda)(\lambda, \lambda) = (\lambda, \lambda)$$

Definition
A coloring is an assignment of elements of 2^2_2 to the leaves of f such that evaluation on both the left and right trees yields the same result, and no node of either tree is given the identity color.

Positive Elements of F Are Colorable

Definition (positive element)
An element f of F is called positive if $f = x_0^{i_0}x_1^{i_1} \cdots x_n^{i_n}$ with all $i_k \geq 0$.

If one could prove that any element of F is colorable, then we would have an alternate proof of the 4CT. As progress towards that goal, it can be shown that all positive elements are colorable.

Lemma
Every tree coloring is equivalent to a 2 coloring of its carets.

$$(\lambda, \lambda) = (\lambda, \lambda)(\lambda, \lambda) = (\lambda, \lambda)$$

Two colored elements $f, g \in F$ are compatible if the 2 colorings of f’s right tree and g’s left tree match on their intersection.

Lemma
If two elements of F have compatible colorings, then their product is colorable.

$$f = (\lambda, \lambda) \quad g = (\lambda, \lambda)$$

Lemma
Given any coloring of the generator x_i, there is a compatible coloring for x_j so long as $j \geq i$.

Theorem (Bowlin, 2011)
Every positive element of F is colorable.

This is an application of the above lemmas to the normal form of a positive element of F.

http://www.oneonta.edu

bowlings@oneonta.edu