A sparse chitinozoan fauna has been recovered from outcrops of the Helderberg Group near Cherry Valley and Schoharie, New York. Samples from the Coeymans, Kalkberg, New Scotland and lower Becraft formations have yielded moderately preserved, low-diversity assemblages of chitinozoans. Most specimens from the Coeymans and Kalkberg formations are too poorly preserved to identify beyond genus level. The most commonly represented genera are *Ancyrochitina*, *Angochitina*, *Gotlandochitina* and *Ramochitina*. The New Scotland Formation contains several K-bentonites, including a U-Pb-dated ash (reported as "Kalkberg Bentonite") which has been used to set the age of the Silurian/Devonian boundary at 418 Ma (Tucker, et. al. 1998). The biostratigraphic position of this ash was designated as lower Lochkovian based on preliminary conodont work which assigned these strata to the postwoschmidt group, suggesting that the ash might be positioned later in the Lochkovian Stage. Samples from the ash-bearing interval of the New Scotland Formation have yielded the biostratigraphically significant Lochkovian chitinozoans *Eisenackitina bohemica* and *Margachitina catenaria*. In addition, samples from the base of the ash-bearing interval have yielded *Pterochitina megavelata* and *Cingulochitina ervensis* which suggests a middle Lochkovian age for the K-bentonites in the New Scotland Formation. Samples from the lower Becraft Formation, above the New Scotland, have yielded a late Lochkovian assemblage which includes *Eisenackitina bohemica* and *Fungochitina lata*. In aggregate, these data suggest that the "Kalkberg" K-bentonite in the New Scotland Formation is middle Lochkovian in age. Thus far, our preliminary chitinozoan data and published conodont studies have failed to locate the Silurian/Devonian boundary in the Appalachian Standard Succession of New York State. However, our determination of a middle Lochkovian age for the New Scotland Formation suggests that 418 Ma may be too young for the Silurian/Devonian boundary, perhaps by as much as 2 Ma, making the Devonian Period longer than previously thought.