

Mathematics, Computer Science and Statistics Department Seminar
Upcoming Talk
Friday, November 4, 2016 at 3:00 p.m. in Fitzelle Hall 205
Axioms or Experiments? Pedagogical Debates on the Teaching of Geometry in 20thCentury Denmark
Toke Knudsen, Mathematics, SUNY Oneonta
Abstract: To be determined.
Fall 2016
Friday, September 16, 2016 at 3:00 p.m. in Fitzelle Hall 205
Some FixedPoint Theory and Its Applications to Logic Programming
Kyle Bayes, Mathematics, Binghamton University
Abstract: Logic programming and knowledge representation play a crucial role in artificial intelligence. Over the last several decades, mathematical theory emerged to provide foundations for these areas. The purpose of this talk is to provide a basic introduction to these foundations by proving a certain fixed point theorem on complete partial orders. We will then explore how to apply this fixedpoint theorem to a restricted language called Datalog. We will also explore how to program and represent knowledge with Datalog.
Friday, October 14, 2016 at 3:00 p.m. in Fitzelle Hall 205
A Normalizing Isospectral Flow on Complex Heisenberg Matrices
Krishna Pokharel, Mathematics, Hartwick College
Abstract:
In this talk, we present an isospectral flow (Lax flow) in the space of
matrices, which deforms any given complex upper Hessenberg matrix with simple
spectrum to a normal upper Hessenberg matrix. Furthermore, we prove that if
the spectrum of the initial condition is contained in a line l inside the
complex plane, then its omegalimit set is actually a tridiagonal normal matrix
possessing a special symmetry among the offdiagonal elements. Moreover, we
prove that this flow provides the solution of an infinitetime horizon optimal
control problem. As a further application, we show that the flow can be used
to construct even dimensional tridiagonal real skewsymmetric matrices with
given simple imaginary spectrum and with given sign pattern for the codiagonal
elements. The main technical aspect of the work is to prove that the
omegalimit set of suitable initial conditions consists of a single point in
the phase space.
Friday, November 4, 2016 at 3:00 p.m. in Fitzelle Hall 205
Axioms or Experiments? Pedagogical Debates on the Teaching of Geometry in 20thCentury Denmark
Toke Knudsen, Mathematics, SUNY Oneonta
Abstract: To be determined.
Friday, December 9, 2016 at 3:00 p.m. in Fitzelle Hall 205
Math Interfacing with Biology: How to integrate across
disciplines and why to do it now
Alexandra Muñoz, Mathematics, University of Copenhagen
Abstract: To be determined.
Spring 2016
Friday, January 29, 2016 at 3:00 p.m. in Fitzelle Hall 205
Pigovian Taxes with NonSeparable Environmental Damages
Philip Sirianni, Economics, SUNY Oneonta
Abstract: A policy instrument called a Pigovian tax raises the private cost of production of a pollutiongenerating good so that it is in line with social costs, thus incentivizing firms to reduce pollution to a socially optimal level. In this paper, we derive the optimal (Pigovian) tax rates for a particular class of pollutants for which the marginal effect of one pollutant decreases with increases in another pollutant. This characterizes the problem of carbon and sulfur emissions. The result has implications for tax policy in that the levels of both pollutants cannot be evaluated independently, as the regulator needs to consider the optimal “mix” of tax rates. Otherwise, pollution control objectives will be neither cost effective nor achieved.
Friday, February 26, 2016 at 3:00 p.m. in Fitzelle Hall 205
A Casual Introduction to Diophantine Geometry
Erik Wallace, Mathematics, SUNY Oneonta
Abstract: TBD
(Special πDay
Talk) Monday, March 14, 2016 at 3:00
p.m. in Fitzelle Hall 205
The Frobenius Problem
Xiao Xiao, Mathematics, Utica College
Abstract: TBD
Friday, March 25, 2016 at 3:00 p.m. in Fitzelle Hall 205
Zoë Misiewicz,
Mathematics, SUNY Oneonta
Abstract:
Who was doing mathematics in ancient Mesopotamia? This talk focuses on the
intellectual elite in the NeoAssyrian period and after, and examines how the
king's priorities guided their actions. Many of the mathematical calculations
carried out in the first millennium BCE aimed at predicting the movements of the
moon and planets, and observers were also stationed around the empire to watch
the skies and keep detailed records. This was a matter of critical practical
importance, because the movements of the celestial bodies could portend good or
bad outcomes for the king and his country. In other words, it appears that
astrological considerations provided the motivation for some mathematical
calculations!
Friday, April 22, 2016 at 3:00 p.m. in Fitzelle Hall 205
Matt Evans, Mathematics, Binghamton University
Abstract: In 1896, Maschke classified
all finite groups that admit a planar Cayley graph. In this talk I will define
groups and graphs, and show how every group naturally gives rise to certain
graphs (Cayley graphs), giving us a bridge between algebra and combinatorics.
Fall 2015
Friday, September 18, 2015 at 3:15 pm, Fitzelle 205
Asymptotic Expansions
Constant Goutziers, Mathematics, SUNY Oneonta
Abstract: In his Theorie analytique des
probabilites, published in Paris in 1812, Laplace showed the relationship
He called this divergent series a serielimite because partial sums alternately lie below and above the value of the integral. For large values of T the terms initially decrease rapidly and allow for a good approximation of Erfc(T). Legendre, in his Traite des fonctions elliptiques (182528), took this idea a step further. He called an infinite series demiconvergente if it represented a given function in the sense that the error committed by stopping at any term is of the order of the first term omitted. Such a demiconvergente series is these days called asymptotic. In this talk I will explore the derivation and interpretation of the given asymptotic expansion of p!
Friday, October 16, 2015 at 3:15 pm, Fitzelle 205
Multisensor Sequential Change Detection
Grigory Sokolov, Statistics, SUNY Binghamton
Abstract:Consider a multisensor quickest detection problem, where a number of possibly correlated sensors monitor an environment in real time and their joint distribution is determined by an underlying parameter vector; at some unknown time there is disorder in the system that changes an unknown subset of the components of the underlying parameter vector. The goal is to detect the change as soon as possible, while controlling the rate of false alarms. In the special case when it is known in advance that the change will affect exactly one sensor, I will revisit the multichart CUSUM, according to which an alarm is raised the first time a local CUSUM statistic exceeds a userspecified threshold. In a more general case, I will show the second order uniform asymptotic optimality of two families of detection rules: the GLRCUSUM and two mixturebased CUSUM rules  for any possible subset of affected components. This general framework incorporates the traditional multisensor setup in which only an unknown subset of sensors is affected by the change. This is joint work with Georgios Fellouris (Department of Statistics, University of Illinois at UrbanaChampaign).
Friday, November 13, 2015 at 3:15 pm, Fitzelle 205
The Tree of Pythagorean Triples
Charles Scheim, Mathematics, Hartwick College
Abstract: This talk will consider Pythagorean Triples and will begin by exploring patterns that define these triples. We will then turn to a discussion of the geometry of these triples as triangles and investigate the incircles and excircles associated with these Pythagorean triangles. We will find that this geometry can lead us to various chains of Pythagorean triples. Finally, we will use a bit of linear algebra to see that these chains of triples actually form a tree rooted at the (3,4,5) triple, and that this tree includes all primitive Pythagorean triples, each one exactly once.
Friday, December 11, 2015 at 3:15 pm, Fitzelle 205
Math and Aesthetics
Richard Barlow, Art , Hartwick College
Abstract:
Though often seen as distinctly separate, art and mathematics are closely
entwined. In this lecture I will show examples of how artists use mathematics as
a tool in their work, incorporating mathematical proportions and processes. I
will also discuss how artists take mathematical concepts as the subject of their
art, sometimes seriously and sometimes playfully.
Spring 2015
Friday, 30 January, 3:00 pm, Fitzelle 205
Introduction to Elliptic Curves
Patrick Milano, Mathematics, SUNY Binghamton
Abstract:
Elliptic curves are curves defined by certain kinds of cubic polynomials. Using only high school algebra and a bit of basic calculus, we'll show how two points on an elliptic curve can be "added" together to produce a third point. This geometric "addition" has many interesting properties, especially when only rational points are considered. We'll look at some examples of elliptic curves, and time permitting discuss some open questions.
Friday, 27 February, 3:00 pm, Fitzelle 205
The longest increasing subsequence problem and the RobinsonSchensted Algorithm
Jonathan Brown, Mathematics, SUNY Oneonta
Abstract:
Given a finite sequence of integers it is natural to ask: what is the longest subsequence? This question has a beautiful solution by way of certain combinatorial gadgets called Young tableaux. In this talk I will explain some of the background of Young tableaux, as well as explaining how to solve the problem using the RobinsonSchensted Algorithm. I will also mention some applications.
Friday, 27 March, 3:00 pm, Fitzelle 205
Joshua Nollenberg, Physics and Astronomy, SUNY Oneonta
Abstract:
Our Universe appears to contain approximately 160 billion galaxies, each of which are collections of roughly 100 billion stars. However, the largest structures in our Universe are clusters of up to 1000 galaxies which are organized along filaments of material which can be hundreds of millions of lightyears long. We will discuss how gravitational forces played a role in shaping the Universe we see today out of conditions which were very different in the Early Universe. We will also discuss the significant role that Dark Matter appears to have played in the process, and mention how we can use Einstein's Theory of Relativity to search for this Dark Matter. Finally, we will explore prospects for observing Dark Matter directly within the next few years.
Friday, 24 April, 3:00 pm, Fitzelle 205
Silvia Jimenez Bolanos, Mathematics, Colgate University
Abstract:
Invisibility has fascinated humans for a long long time. From the Greek legend of Perseus versus Medusa (with a helmet of invisibility) to the more recent The Invisible Man, The Invisible Woman, Wonder Woman's invisible jet, Star Trek and Harry Potter' invisibility cloak, among many others.
In October of 2006, David R. Smith, associate professor of electrical and computer engineering at Duke University, led a team that used a circular cloaking device to successfully bend microwaves around a copper disk as if the disk were invisible. However, the mathematics behind this circular cloaking device had already been developed by Allan Greenleaf, a mathematician at the University of Rochester.
I will present an overview of recent mathematical advances in t
Fall 2014
Friday, 5 September, 3:00 pm, Fitzelle 205
Karl Seeley, Economics, Hartwick College
Abstract:
The workhorse models in environmental economics are some elegant applications of a simple logistic growth function, tweaked in different ways to reflect stylized facts about populations of fish, stands of trees, or some catchall of renewable resources. This seminar will demonstrate these uses and what can be learned from them, as well as discussing some important parts of reality that get left out.
Friday, 3 October, 3:00 pm, Fitzelle 205
Bhāskarācārya: 900^{th} Birth Anniversary
Keith Jones and Toke Knudsen, Mathematics, SUNY Oneonta
Abstract:
The current year, 2014, is the 900th birth anniversary of a remarkable mathematician and astronomer from India: Bhāskarācārya, also known as Bhāskarā II. Our talk will focus on him, his times, and his contributions to mathematics and astronomy. In particular, the cakravāla method for solving quadratic indeterminate equations will be described in detail.
Friday, 7 November, 3:00 pm, Fitzelle 205
Time Frequency and Wavelet Analysis
Jens Christensen, Mathematics, Colgate University
Abstract:
This talk will give a quick introduction to time frequency and
wavelet analysis, and is accessible to students with a background of
Calculus II including Taylor series. Wavelets have been a hot topic in
mathematics in the last 30 years. The use of wavelets was initiated by
Jean Morlet in order to analyze seismic data. Today they are used in
JPEG images and in X+ray tomography, and they have become a separate
area of study in both pure and applied mathematics. We begin this talk
by solving a differential equation (the heat equation) which lead Joseph
Fourier to invent the Fourier series. Next we will see how signals such
as music and images can be analyzed using various transforms. In
particular we will apply wavelet techniques to image compression, and
will see how 99% of the information in an image can be thrown away while
still maintaining the main features of the image.
Friday, 5 December, 3:00 pm, Fitzelle 205
My Favorite Groups
Rachel Skipper, Mathematics, Binghamton University
Abstract: We'll start by playing the game Al Jabar and then I'll discuss how
movements in the game are really an example of addition in a group.
After, we'll investigate some other groups that show up naturally all
around including symmetries of a square and point groups in chemistry.
Spring 2014
Friday, 31 January, 3:00 pm, Human Ecology 105
Introduction to Lie Algebras
Jonathan Brown, Mathematics, SUNY Oneonta
Abstract:Algebraic Lie theory is an active and exciting area of
mathematics research with many applications to other areas of
mathematics and physics. At the heart of algebraic Lie theory are Lie
algebras. They arise naturally as tangent spaces of Lie groups. In
this talk I will give the basic axioms for Lie algebras as well as
some examples. I will also explain their relationship with Lie
groups, and I will talk about one of the connections between Lie
theory and physics. The talk is intended for math undergraduates,
and it will be accessible to anyone who has taken Calculus, though
knowledge of elementary linear algebra will help.
Friday, 28 February, 3:00 pm, Morris 104
Nontransitive dice and directed graphs
Alex Schaefer, Mathematics, Binghamton University
Abstract:
A set of three dice A, B, and C are said to be nontransitive if
the three probabilities (A beats B), (B beats C) and (C beats A) all
exceed 1/2. I will prove that such dice can be constructed with any number
of (at least 3) sides, and the number of dice can also in fact be
arbitrary. Then I will discuss the connections to directed graphs and show
that any directed graph has a set of dice that can be associated to it.
Friday, 21 March, 3:00 pm, Morris 104
POJOS, POGOS, and beans: Are these MREs or your employment future?
Dennis Higgins, Computer Science, SUNY Oneonta
Abstract:
POGOs and POJOs are "plain old" Groovy or Java objects which would typically
follow the bean convention  a standard way to build them and access their
fields or properties. Beans provide a simple mechanism that is leveraged in
Java and Groovy to facilitate object manipulation. In this talk I will
develop a few beans and show how they can be used in a variety of ways, like
application programs involving a database connection, web services and web
applications. Time permitting, I'll show how Grails uses beans and talk
about the vacation diary my students will build as one of their projects this
semester. No programming background is needed.
Friday, 18 April, 3:00 pm, Morris 104
Making a Really Cheap Quantum Graph
Kevin Schultz, Physics, Hartwick College
Abstract:
The study of quantum systems, whose classical counterparts are chaotic, is
called Quantum Chaology. In my talk I will describe quantum chaos and how we
can measure its effects as well as describing the experimental realization of
quantum graphs, which are an ideal test bed for investigating quantum chaos.
In particular how we can use acoustic analogs of quantum graphs, which allows
for low cost experiments (we use PVC from Home Depot and a sound card from a
computer), and a smaller learning curve for undergraduates.
Fall 2013
Friday, 20 September, 3:00 pm, Morris 104
Suspect Something Fishy? How Statistics Can Help Detect It, Quickly
Aleksey Polunchenko, Mathematical Sciences, Binghamton University
Abstract:
Suppose you are gambling at a casino in a game where you and a dealer take turns rolling a die. Suppose next that the die is initially fair, that is, each of its six faces has the same probability of showing up. However, at some point during the course of the game the evil dealer  without you seeing  replaces the die with an unbalanced one, and so from that point on the die's faces are no longer equally probable. Yet as the new die looks exactly the same as the old fair one, you continue to gamble without suspecting anything. The natural question is: as the game progresses, can you somehow "detect" that the die has been tampered with?
This question is a gamble on its own. On one hand, it would be desirable to find out that the die is no longer fair as fast as possible, so as to quit the game to prevent further losses and subsequently file a lawsuit against the casino. On the other hand, if you are too triggerhappy there is a risk of stopping the game too quickly, i.e., stopping the game before the fair die was replaced with the unbalanced one, which is not desirable. How does one go about solving this problem? Turn to statistics!
Statistics is a branch of mathematics concerned with rational decisionmaking among uncertainty. This is essential in real life, as only a wellthoughtout decision can enable one to take the best action available given the circumstances. This talk's aim is to provide an introduction to the nook of statistics that deals with cases when a solution has to be worked out "onthego", i.e., when time is a factor as well. Specifically, the talk will focus on the socalled quickest changepoint detection problem. Also known as sequential changepoint detection, the subject is about designing fastest ways to detect sudden anomalies (changes) in ongoing phenomena. One example would be the above biased die detection problem. However, there are many more, arising in a variety of domains: military, finance, quality control, communications, environment  to name a few. We will consider some and touch upon the subject's basic ideas.
Friday, 11 October, 3:00 pm, Morris 104
Decision Making using Analytical Hierarchies
Ronald Brzenk, Mathematics, Hartwick College
Abstract:
This presentation will discuss the decision making process, Analytical Hierarchies. I will describe how I have used it in my teaching. It has been the basis for students in my course Mathematical Modeling to actually do some "math modeling". I have also used it in some lower level courses. Finally, I will describe how it has also been the basis for senior projects in mathematics.
Friday, 8 November, 3:00 pm, Morris 104
Economics, Mathematics, and Job Market Signalling
Kristen Jones, Economics, Hartwick College
Abstract:
Economists use mathematical tools extensively in the analysis of consumer and producer behavior. This talk will cover the two core optimization problem used in microeconomic theory  utility maximization and profit maximization  focusing both on the mathematical tools used as well as the economic theory. The lecture will then turn to a more sophisticated application of mathematics, Gibbon's (1992) game theory model of the jobmarket dynamics introduced in Spence (1973). Spence's model of jobmarket signaling involves decisions of two parties (an employer and an employee) under uncertainty and we will discuss the structure and solution methodology of Spence's models as well as the interesting (and unexpected) results of the model.
Friday, 6 December, 3:00 pm, Morris 104
Generalizing Mundici's Gamma Functor
Joshua Palmatier, Mathematics, SUNY Oneonta
Spring 2013
Friday, 25 January, 3:00 pm, Craven Lounge
Bumping and Sliding for Beginners: An Introduction to Young Tableaux
James Ruffo, Mathematics, SUNY Oneonta
Abstract:
The primary goal of this talk will be to present some of the basic properties on an interesting class of combinatorial objects called Young tableaux. After discussing the basic definitions and constructions, such as the Jeu de Taquin and the RobinsonSchensted algorithm, we will discuss an application to some problems in enumerative geometry.
Friday, 8 March, 3:00 pm, Craven Lounge
The Little Theorem that Could: Finding Pseudoprimes by Matching Terms of PolynomialValue Sequences
Robert Sulman, Mathematics, SUNY Oneonta
Abstract:
Pseudoprimes are counterexamples to the converse of Fermat's Little Theorem: If p is prime and p does not divide a, then p divides ap11. Thus, a pseudoprime (with respect to a∈Z+) is any composite n satisfying: n divides an11. In this talk, a modest set of divisibility relations are shown to generate two polynomialvalued sequences. A match between them produces a pseudoprime (with an additional nondivisibility condition). A generalization of this construction is then given, which yields sets of pseudoprimes with respect to a given base, and a variety of modifications are seen. Finally, we describe primes q that are a divisor of a pseudoprime with respect to a for all a=2,3,4,...,q1.
Friday, 22 March, 3:00 pm, Craven Lounge
Why Study Finite pGroups
Joseph Brennan, Mathematics, SUNY Binghamton
Abstract:
Given a prime p, a finite pgroup is a group whose order is a power of p. Though major structures of a pgroup lie outside the scope of a typical undergraduate abstract algebra course; I would like to spark interest in finite pgroups by defining their basics and outlining their role in the study of groups. If time permits, I will outline some major developments in the field.
Friday, 26 April, 3:00 pm, Human Ecology 106
On Sums of Finitely Many Distinct Reciprocals
Donald Silberger, Mathematics, SUNY New Paltz
Abstract:
Let F denote the family of all nonempty finite subsets of N := {1, 2, 3, ...}, and let I ⊆ F be the family of all intervals [m, n] := {m, m+1,..., n1, n}. We define the function σ : F→Q+ by
σ : X → σ X := Σk∈ X 1⁄k.
Since the harmonic series 1 + 1⁄2 + 1⁄3 + ... diverges to ∞, and since its terms are positive, with limk→∞ 1⁄k = 0, it is easy to see that the set H := {σ[m, n] : m ≤ n ∧ {m, n} ⊂ N} of harmonic rationals is dense in ℜ}+ . So it is natural to ask: Is H = Q+? In 1918 J. Kürschák answered this question in the negative by proving that σ[m, n] ∈ N only if m = n = 1. We showed last year that in fact σ[m, n] = 1⁄k for k ∈ N only if m = n = k. This suggested a generalization, which we finally managed to establish:
Theorem: σI is injective.
As of the present writing, my brother Allan, my daughter Sylvia and I are attempting to pick the final burr out of a proof of the following
Conjecture: The function σ is a surjection from F onto Q+.
Indeed, if the approach we are using establishes this conjecture then it will moreover, for each a ∈ N, facilitate the construction of a partition Sa of N into infinitely many finite sets such that σ X = a for every X ∈ Sa. Furthermore, it will give us that, for each r ∈ Q+, there are infinitely many distinct Y ∈ F such that σ Y = r.
Fall 2012
Friday, 7 September, 3:00 pm, Room: Human Ecology 216
Lattice, You Have Seen One Don't Even Know It
Martha Kilpack, Mathematics, SUNY Oneonta
Abstract:
A lattice is a partially ordered set with some extra conditions. We will look at these conditions and some examples of lattices. We will then look at how these lattice are actually algebraic structures and what questions then arise.
Friday, 5 October, 3:00 pm, Room: Human Ecology 106
Trying to understand evolution? Get help from the Clergy (Three Cheers for the Good Reverend Bayes)
Jeffrey Heilveil, Biology, SUNY Oneonta
Abstract:
The study of evolutionary relationships, whether between or within species, often requires a "backward view", as we are unable to observe evolution in action for many species. Answering evolutionary questions therefore requires heavy reliance on probability. One of the most helpful analytical paradigms involves the application of Bayesian statistics to evolutionary datasets. After briefly discussing the nature of evolutionary research, Bayesian statistics will be explained at a basic level, including showing how conditional probability impacts our understanding of topics such as breast cancer. We will then look at an example of how one can use Bayesian statistics to evaluate the recolonization of the northern US following the retreat of the Wisconsinan Glaciation.
Friday, 2 November, 3:00 pm, Room: Human Ecology 106
Hyperbolic Geometry: Logic Takes Us to a Strange Place
Charles Scheim, Mathematics, Hartwick College
Abstract:
The geometry that most people are familiar with from their high school math days, Euclidean Geometry, has a long history and great importance from both practical and intellectual viewpoints. But the discovery in the 1800's of nonEuclidean geometries caused a revolution in the fundamental assumptions about the relationship of mathematics with the world around us. This presentation will use the software Geometer's Sketchpad to reawaken the basic principles of Euclidean geometry for the listeners and to help them visualize a model of a nonEuclidean geometry. We'll explore this new geometry and examine some of the philosophical questions that arise because of its existence.
Friday, 30 November, 3:00 pm, Room: Human Ecology 106
Games, Fractals, and Groups: From Hanoi to Sierpinski
Keith Jones, Mathematics, SUNY Oneonta
Abstract:
The longstudied game The Tower of Hanoi has a fascinating connection to the famous Sierpinski Gasket fractal, which provides a clear visualization of the recursive nature of its solution. This connection is strengthened by a group structure, which exhibits the same selfsimilarity. The fractal nature of the group lends itself to a natural description in terms of a finite state automaton a theoretical model for computing. In this expository talk, I will introduce the various concepts involved, and illustrate how these seemingly disparate concepts are tightly intertwined.
Spring 2012
Friday, 3 February, 3:00 pm, Fitzelle 206
From the Four Color Theorem to Thompson's Group F
Garry Bowlin, Mathematics, SUNY Oneonta
Abstract:
The Four Color Theorem states that given any map on the sphere (or plane) one can color the map with four colors so that no two regions that share an edge are the same color. The question was first posed by Francis Guthrie in the early 1850's and likely publicized by him in The Athenæum in 1854. We will discuss various reformulations of the Four Color Theorem, which will take us from the world of graphs and topology into the realm of group theory. No prior knowledge of group theory or graph theory is necessary.
Friday, 2 March, 3:00 pm, Fitzelle 206
Statistics: The Good, the Bad, and the Ugly
Grazyna Kamburowska, Statistics, SUNY Oneonta
Abstract:
"There are three kinds of lies: lies, damned lies, and statistics.'' The statement, attributed to Benjamin Disraeli, refers to the persuasive power of numbers, the use of statistics to bolster weak arguments, and the tendency of people to disparage statistics that do not support their positions. There are many researchers who are passionate about exposing poor studies but, unfortunately, the incorrect use of statistics is still common. Many researchers still shy away from the rigorous application of statistical methods or, worse, use them incorrectly. We will discuss various examples of the misuse and abuse of statistics.
Friday, 30 March, 3:00 pm, Fitzelle 206
Perturbations of Fourier Bases and the Haar Wavelet
Min Chung, Mathematics, Hartwick College
Abstract:
A Riesz basis is the image of an orthonormal basis under an invertible continuous linear mapping. Both orthononal basis and Riesz basis provide us with a simple representation of an element in Hilbert space. Since perturbing an orthonormal basis in a controlled manner yield a Riesz basis, this is an important subject of study which goes back to Paley and Wiener who were interested in the question of which perturbations {1/(2π)eλnx} of the orthonormal basis {1/(2π)enx} are still a Riesz basis for L2[π,π]. In this context, it is then natural to consider when the sequence {&lambdann} is small, so that the perturbations of local Fourier bases are still a Riesz basis. In this talk, first we find Riesz basis for L2[0,1] of the form {sin(λkx)}, by perturbing the local sine and cosine orthonormal bases of Coifman and Meyer. Second, the Haar function, the simplest compactly supported but discontinuous wavelet. By using the properties of Bessel sequences, we provide an explicit and more practical way of constructing locally continuous perturbations of the Haar wavelet. In this way, we can generate the continuous or even smooth perturbation of the Haar wavelet which then will lead to an alternative way to the approach given by Aimer, Bernardis, and Gorosito, but we provide better conditions for perturbations and frame bounds.
Friday, 27 April, 3:00 pm, Fitzelle 206
Ruler Constructions
Marius Munteanu, Mathematics, SUNY Oneonta
Abstract:
Ruler and compass constructions have a rich and fascinating history going back more than two thousand years. We will see that many of these constructions can be carried out with a ruler alone, as long as an appropriate "starter set'' is given.
Fall 2011
Thursday, 1 September, 3:20 pm, Fitz 308
From Galaxy Clusters to Cosmology: Using Mathematics to Solve Some of Astronomy's Biggest Problems
Parker Troischt, Physics, Hartwick College
Abstract:
In the last decade or so, astronomy has advanced extremely rapidly due to technological advances used in telescopes, satellites and large sky surveys. We now have quantitative data on hundreds of extrasolar planets, countless stars and over a million galaxies. Future telescopes like the Large Synoptic Survey Telescope (LSST) promise to extend this much further and will survey the entire visible night sky every three days. Here, we discuss how mathematics is used to study the properties of everything from nearby stars, to galaxies, to clusters of galaxies located over 100 million light years away. In addition, we will show how solutions to Einstein's equations can be used to study some of the most interesting questions about the universe starting with the Big Bang.
Friday, 23 September, 3:00 pm, Fitz 221
Cantor's Diagonalization Revisited: Constructing Transcendental Numbers
LuiseCharlotte Kappe, Mathematics, Binghamton University
Abstract:
An evolving awareness of the deep nature of the real numbers began over 2,500 years ago, when the Pythagoreans were startled by their discovery that numbers such as the square root of 2 were not rational. A recurring theme in their history is that the set of real numbers is richer and much more complex than is generally assumed. The demonstration by Cantor, that the reals cannot be enumerated, is a wellknown landmark of these developments. Knowing that the rationals can be enumerated, it follows from Cantor's diagonalization that there exist irrational numbers. Similarly, knowing that the algebraic numbers can be enumerated, it follows that there exist transcendental numbers. But can one use Cantor's diagonalization for the construction of such numbers? The topic of this talk is the explicit construction of a transcendental number using Cantor's diagonalization.
Friday, 21 October, 4 pm, Fitz 221
Computational Thinking in 24Point Card Game
Sen Zhang, Computer Science, SUNY Oneonta
Abstract:
The 24point game is a mathematical game in which the object is to construct an arithmetic expression using four integers (usually from 1 to 10) and three out of four possible elementary arithmetic operations (addition, subtraction, multiplication and division) so that the expression evaluates to 24. For example, given a hand of four integers 4,7,8,8, (78/8)*4 would be a possible solution. Notice that all four integers need but not every operation needs to be used in the expression. The game is relatively easy but entertaining enough to play for almost any people who have elementary arithmetic knowledge. Two questions that tend to captivate many people who have played the game are how to find out all the hands that have at least one possible solution and how to find out all possible solutions for each of such hands. Obviously these are the problems we don't want to solve manually. This talk will first examine a set of mathematical and computational thinking techniques that can help answer the above questions. After that, a straightforward software that implements the techniques will be presented as a typical computing solution where mathematical thinking and computational thinking go hand in hand perfectly.
Friday, 11 November, 3pm, Fitz 221
From Ordinary Differential Equations to Geometric Control Theory
Laura Munteanu, Mathematics, SUNY Oneonta
Abstract:
Many real life processes can be modeled by (systems of) ordinary differential equations. More complex processes involve a parameter/control that can be adjusted in order to affect their outcome. Due to the large number of variables or the nonlinear nature of these control systems, one seeks to find simpler systems whose solutions mimic (in a certain sense) the solutions of the original system. In this presentation, we look at how geometric objects such as differentiable manifolds and vector fields can be used to better understand the aforementioned problem.
Spring 2011
Friday, 4 February
Chess Endgame Composition: Proofs in Pictures
Robert Sulman, Mathematics, SUNY Oneonta
Abstract:
Although primarily viewed as a game to be played between two individuals, the very nature of chess leads to configurations of the pieces (called "positions") in which one player has a forced win, or a forced draw. Such positions have been composed as well, that is, they have not come about naturally from an actual game. The freedom to create such problems enables one to highlight a given theme in which the pieces interact on the 64 squares. Whether one tries to solve such a composition, or simply read the solution, the moves leading to the end result are intended to be surprising and beautiful. A brief review of the moves of the pieces will be followed by a series of endgame studies (as they are also called), beginning with relatively simple examples. The more subtle studies, including those by pioneer Alexey Troitsky will (I hope) draw you into this wonderful area of chess.
Friday, 4 March
Fibonacci's Not Just Counting Rabbits Anymore
Gary Stevens, Mathematics, Hartwick College
Abstract:
In 1202, Leonardo of Pisa, son of Bonacci, published his pioneering work, Liber Abaci, the book of calculation. In this book, Fibonacci presented a problem relating to the breeding of rabbits whose solution gave rise to a sequence of numbers which now bears his name. The Fibonacci Sequence has been studied and generalized for the last 800 years and is now one of the cornerstones of the area of mathematics known as combinatorics, the art of counting. The sequence shows up in some unexpected places and provides solutions to many counting problems. This lecture will look at some of the myriad uses of the sequence and will provide a gentle overview of and introduction to the subject of combinatorics.
Friday, 8 April
Techniques in Atmospheric Dynamics and Weather Forecasting
Melissa Godek, Meteorology, SUNY Oneonta
Abstract:
Within the field of meteorology, the study of atmospheric dynamics focuses on macroscale motions and their ability to create the weather phenomena and climate patterns experienced at the surface. These circulations are described by fundamental and apparent Earth forces as well as the governing equations of motion. It is through calculus that atmospheric scientists learn how to apply these equations in dynamics to obtain a new set of equations referred to as QuasiGeostrophic Theory. Just as important to meteorologists are Numerical Weather Prediction (NWP) models, which are used every day in short and longterm weather predictions. These NWP models are essentially algorithms that represent the QuasiGeostrophic Theory that describes macroscale atmospheric circulations. This talk will describe how atmospheric scientists incorporate the science, mathematics and computer model predictions to produce multiple forecasts each day.
Friday, 29 April
Not So Boring Statistics
JenTing Wang, Statistics, SUNY Oneonta
Abstract:
In this talk, we'll discuss three real court cases, which involved different types of statistical reasoning. In particular, we'll see the statistical evidence found in a serial killer case and how it was used in court. This presentation is accessible to everyone and no previous statistical knowledge is required.
Fall 2010
Friday, 10 September
Bounded Analytic Functions with Unbounded Parts
Angeliki KazasPostisakos, SUNY Oneonta
Abstract:
For any analytic function on the unit disc, f &isin Hp, there exists a factorization f(z)=g(z)F(z) where g is inner and F is outer. The properties of g and F are well known and in particular the function g is a bounded analytic function on the unit disc. More generally, for an inner function φ, there exists a factorization f(z)=h(z)F(φ(z)) where h is a φp inner function and F is outer. We will construct a function that is bounded and analytic on the unit disc with unbounded φp inner part. All the terms above will be defined and the talk should be accessible to students that have completed the calculus sequence.
Friday, 8 October
The Fundamental Theorem of Calculus: History, Intuition, Pedagogy, Proof
V. Frederick Rickey, US Military Academy at West Point
Abstract:
The Fundamental Theorem of Calculus (FTC) was a theorem with Newton and Leibniz, a triviality with Bernoulli and Euler, and took on the concept of "fundamental" when Cauchy and Riemann defined the integral. FTC became part of academic mathematics in the 19th century, but waited until the 20th century to take hold in classroom mathematics. We will discuss the transition from clear intuition to rigorous proof that occurred over three centuries.
Friday, 5 November
Mathematics and the Methods and Models of Morality
Michael Green, Philosophy, SUNY Oneonta
Abstract:
Mathematics and moral theorizing have had a long and tangled history. Philosophy has nurtured mathematical forms of thought that have, in turn, had a profound influence on ethical theorizing. The aim of this lecture is to reflect upon the relationship between mathematics and moral theorizing in Plato, Aristotle, Augustine, Hobbes, Spinoza, Bentham, and Rawls.
Friday, 3 December
On Symmetries, Supersymmetries, and Akan Symbolism
Michael Faux, Physics, SUNY Oneonta
Abstract:
Some of the intricate mathematics used by physicists to probe the laws of nature are rendered helpfully perspicuous by the use of symbolic representations. In some cases, such symbols exhibit a mathematical significance which transcends their original motivation. In this talk I will explain how a colorful graphical paradigm, reminiscent of West African tribal symbols, invented to represent supersymmetry algebras, which I will explain, have exposed an unexpected, fascinating, and rich connection between an emergent quantum theory of gravitation and the mathematics of coding theory.
Spring 2010
Friday, 5 February
Math Anxiety
Lynne Talbot, SUNY Oneonta
Abstract:
The presentation will outline the causes and symptoms of math phobia, as well as suggestions for instructors to alleviate the anxiety that some students feel when confronted with a math problem. Myths regarding math, such as math is not creative, will be dispelled. A pamphlet will be distributed for instructors to reference to assist in identifying math phobic students.
Friday, 5 March
Knot a Graph? Why Not?
Susan Beckhardt, SUNY Albany
Abstract:
Choose any seven points in space, and connect each pair of points with a curve in such a way that none of the curves intersect. No matter how you arrange your points and curves in space, I can always find a closed loop that is tied in a knot. The choice of points and curves is called a spatial embedding of K7, the complete graph on seven vertices, and a graph with the property that every spatial embedding has a knotted cycle is said to be intrinsically knotted. Although topological in nature, the remarkable fact that K7 has this property can be proved with little more than some basic combinatorics. We'll go over the proof, and then look at some further results in the field of intrinsically knotted graphs.
Friday, 26 March
Embarrassing Moments in the History of Calculus
Kim Plofker, Union College
Abstract:
The development of modern calculus wasn't the smooth transition pictured in today's textbooks, but rather a long struggle between practicality and precision. Handling the tricky quantities known as infinitesimals, which might be zero or not as the situation required, led early modern mathematicians into some awkward contradictions and some vehement disputes. This talk surveys some of the peculiar innovations in calculus that you won't find in your calculus book, and the controversies, shock, and outrage that they provoked in their day.
Friday, 16 April
The Power Residue Problem and Arithmetic Geometry
John Cullinan, Bard College
Abstract:
If an integer is an nth power, then it is an nth power mod p for all primes p. However, the converse is not always true  there exist integers which are nth powers mod p for all primes p, yet are not the nth power of an integer. In general, given a polynomial with integral coefficients, it can be quite difficult to describe its integral (or rational) roots. One technique that has proved fruitful is instead to find roots of the polynomial mod p for prime numbers p, and from these roots deduce the existence (or nonexistence) of a rational root. The success or failure of this approach often gives new insight into the original problem. This talk will focus on the example given above, and a similar problem phrased in terms of points on elliptic curves and abelian varieties.
Friday, 7 May
Let's Pack! An Introduction to Hyperspheres and Hypercubes
David Biddle, SUNY Oneonta
Abstract:
It is commonly said that beauty is in the eye of the beholder, but what if the eye is incapable of seeing something in its entirety? Higher dimensional geometry affords us the opportunity to explore beautiful objects and phenomena using a plethora of tools from all parts of mathematics. In this talk we compare the 'look and feel' of higher dimensional analogues of the circle and sphere (hyperspheres) and the square and cube (hypercubes) and come to the conclusion that exploring higher dimensions leaves plenty of room for the bizarre!
Fall 2009
Friday, 11 September
MZeroids: Structure and Its Effect on the Additive Operation
J. Palmatier, SUNY Oneonta
Abstract:
An mzeroid is an algebraic structure with both operations and an inherent order on its elements. If we remove the order by making it totally ordered and finite, only the additive operation remains important. In this talk, we will discuss how the structure of the finite, totallyordered mzeroid, both algebraic and pictorial, restricts the additive operation table and allows you to generate such an mzeroid with a minimum of fuss.
Friday, 9 October
The Mathematics of Origami
L. Bridgers, SUNY Oneonta
Abstract:
With paper folding, we can complete geometric constructions that are impossible using the classical geometry tools of a straight edge and compass. In this talk we will explore some origami constructions and the geometry proofs behind them. This will include both constructions that we could complete with a straight edge and compass, such as the construction of an equilateral triangle, and those that are impossible using a straight edge and compass, such as the trisection of an angle.
Friday, 6 November
Number Theory and Music
L. Alex, SUNY Oneonta
Abstract:
In this talk connections between musical intervals and Diophantine equations in number theory will be described. In particular the intervals will be viewed as "superparticular" ratios of the form (n+1)/n. In this form the octave would be viewed as the ratio 2/1. The ten superparticular ratios corresponding to the intervals preferred by the Western ear will be listed. Each of these ratios corresponds to a solution of a certain Diophantine equation in number theory. An elementary number theoretic method for solving the equation will be illustrated.
Diophantine equations in number theory will be described. In particular the intervals will be viewed as "superparticular" ratios of the form (n+1)/n. In this form the octave would be viewed as the ratio 2/1. The ten superparticular ratios corresponding to the intervals preferred by the Western ear will be listed. Each of these ratios corresponds to a solution of a certain Diophantine equation in number theory. An elementary number theoretic method for solving the equation will be illustrated.
Friday, 4 December
Disappearing Messages: Basic Steganography
J. Ryder, SUNY Oneonta
Abstract:
The practice of steganography involves surrepetitiosly hiding a secret within some object at a source location then allowing that object to be carried to some destination. At the destination, a receiver extracts the secret from the carrier. Steganography is secret communication in which only the sender and receiver of the secret know of its existence yet it travels through hostile territory unnoticed. In Ancient Greece, troops at one location would tattoo a secret onto a slave's shaved head. When the slave's hair had once again become sufficiently long, the slave would be sent to another camp some distance away. Upon arrival, the slave's head was shaved and the secret message was read. This brief talk will show a few ways that steganography is used today in the digital world. Examples will show methods of hiding secrets in images, in Internet web pages, in music, and even in plain text.

