2011 Pearly Mussel Surveys
of Portions of the Catatonk Creek, Butternut Creek
and Unadilla River

Submitted to:
James Curatolo
Upper Susquehanna Watershed Coordinator
Upper Susquehanna Coalition
4729 State Route 414
Burdett, NY 14818
&
Thomas Bell
Project Manager & State Wildlife Grants’ Biologist
1285 Fisher Ave Cortland, NY 13045

Submitted by:
Dr. Willard N. Harman, Distinguished Service Professor
&
Paul H. Lord

Authors:
Paul H. Lord
lordp@usa.net
&
Timothy N. Pokorny
pokornt@oneonta.edu

January, 2012

SUNY Oneonta Biological Field Station
5838 State Highway 80
Cooperstown, New York 13326
EXECUTIVE SUMMARY

We completed surveys for pearly mussels on portions of the Catatonk Creek, the Butternut Creek, and the Unadilla River in 2011. Financial considerations limited the scope of our surveys, but we made good use of techniques mastered in the surveys completed in the previous three years. We sought to determine the status of the Brook floater (*Alasmidonta varicosa*) in the Catatonk and to see if we could find a nearby location for relocating the Brook floaters during dam removal. We sought to determine the status of the four New York Susquehanna River Watershed pearly mussel species of greatest conservation need (SGCN), Elktoe (*Alasmidonta marginata*), Brook floater (*A. varicosa*), Green floater (*Lasmigona subviridis*), and Yellow lampmussel (*Lampsilis cariosa*), in the Butternut Creek and the Unadilla River. Additionally, we looked under large flat rocks in the Butternut Creek and the Unadilla River for Hellbenders (*Cryptobranchus alleganiensis*).

Key findings:

- Brook floaters persist in the Catatonk Creek, but there is no evidence of recent reproduction. Our cursory survey of nearby stream locations failed to identify a suitable location for relocating the mussels during dam removal.
- Dense and extensive pearly mussel beds exist in the Butternut Creek, but there is only one pearly mussel SGCN found there: the Yellow lampmussel.
- All four SGCN appear (Brook floater identification was tentative) in the Unadilla River, but tens of thousands of mussels have been killed in the last year.
 - A NYSDEC investigation into the cause was stymied by issues of jurisdiction: the Unadilla River forms the boundary between two NYSDEC regions.
- No Hellbenders were located.

Recommendations:

- Proceed with the plan for removing the Spencer Lake dam protecting the pearly mussels immediately downstream of the dam by temporarily moving them to a refuge location.
- Protect the extensive Eastern elliptio (*Elliptio complanata*) beds in the Butternut Creek which can be used to repopulate New York Susquehanna River Watershed with Eastern elliptios once their larval hosts, American eels (*Anguilla rostrata*), are reintroduced to the watershed.
- Protect the Unadilla River from pearly mussel killing pollution.
BACKGROUND

There being no funding for writing this important report, it is terse and without full editing. We provide background regarding pearly mussels in the NY State section of the Susquehanna Watershed in Lord et al. (2011). The focus of our 2011 surveys was to provide a “quick look” at three lotic areas of interest: the Catatonk Creek, Butternut Creek and Unadilla River.

The Catatonk Creek, in Tioga County, held a population of threatened Brook floaters (Alasmidonta varicosa) a decade past (Strayer & Fettermann 1999; NY Natural Heritage 2011) just downstream of a Catatonk Creek dam being considered for removal (Nxxxxxxx Wxxxxxxx; UTM XXT xxxxxxE, xxxxxxx; Curatolo pers comm). Our focus was to determine if the population persisted and if nearby sites could serve as a temporary home for the Brook floaters.

The Unadilla River was preliminarily surveyed by a student of Lord’s (Maricle 2011) in 2010. Maricle’s survey provided evidence of the persistence of three of the pearly mussel species of greatest conservation need (SGCN) in New York Susquehanna River Watershed rivers: the Elktoe (Alasmidonta marginata), Green floater (Lasmigona subviridis), and Yellow lampmussel (Lampsilis cariosa). Adding to interest in the Unadilla River was that it previously held Eastern hellbenders (Cryptobranchus alleganiensis), a species of special concern (NYSDEC 2012; USCA 2010). Our focus was to validate and expand upon the 2010 Unadilla River survey seeking to identify pearly mussel biodiversity hotspots.

The Butternut Creek is a major Unadilla River tributary reputed to be relatively pristine and considered a potential habitat for both pearly mussels of greatest conservation need and the Eastern hellbender (USCA 2010).

Methods and Rationale

To make the most of our financially constrained field time, we tailored methods refined in recent Susquehanna watershed surveys (Lord et al. 2011) to each waterway and to our focus for that waterway.

In the Catatonk Creek, we devoted most of our time to careful accounting for the Brook floater population immediately downstream of the dam considered for removal. We first completed a careful examination of the creek bottom using a combination of viewing buckets, mask and snorkel, and SCUBA as appropriate for the varying depths found in the Creek 400 m downstream of the dam. We then excavated 105 randomly chosen 0.10 m² quadrats to the depth that pearly mussels could burrow and survive, and we sieved the sediments through at 0.12 inch [3.05 mm] mesh screen to find small mussels. We noted all live mussels found and characterized the Creek bottom and shorelines of surveyed areas consistent with Lord et al. (2011). Following this intense survey at the dam site, we made cursory viewings of streams above and below our survey site to identify potential pearly mussel transfer refuge locations for possible dam modification work.
In the Butternut Creek, making use of facilitating clarity unusual for the New York Susquehanna River Watershed rivers, we casually surveyed extensive areas from our kayaks. We validated our kayak observations in four locations using viewing buckets, mask and snorkel, and SCUBA as appropriate for the varying depths found in the creek. We noted all live mussels found, although in some sections we noted the mussels as too numerous to count and estimated their densities per square meter. In areas where we left our kayaks to search for mussels, we characterized the creek bottom and shorelines of surveyed areas consistent with Lord et al. (2011). We used flashlights to search under large flat rocks for Hellbenders (*Cryptobranchus alleganiensis*).

In the Unadilla River, our searches were limited to viewing buckets, mask and snorkel, and SCUBA as appropriate for the varying depth and visibility found in the river. We sampled in 14 locations and used our kayaks to identify additional locations with significant numbers of dead pearly mussels. We determined the approximate timeframes for these deaths based on shell erosion and *aufwuchs* attached to the shells. In areas where we left our kayaks to search for mussels, we characterized the river bottom and shorelines of surveyed areas consistent with Lord et al. (2011). We used flashlights to search under large flat rocks for Hellbenders.

Per methods found in Lord et al. (2011), we created ArcGIS files, documenting our findings, for submittal to the USC, NYSDEC, and New York Natural Heritage Foundation.

RESULTS

In the Catatonk Creek we found a modest population of Brook floater although we found no evidence of recent reproduction (Table 1). Our cursory survey of accessible stream locations above and below the intense survey location did not produce an ideal location for temporary storage of the pearly mussels in the intense survey location.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Number Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brook floater</td>
<td>Alasmidonta varicosa</td>
<td>10</td>
</tr>
<tr>
<td>Eastern elliptio</td>
<td>Elliptio complanata</td>
<td>269</td>
</tr>
<tr>
<td>Eastern floater</td>
<td>Pyganodon cataracta</td>
<td>9</td>
</tr>
<tr>
<td>Squawfoot</td>
<td>Strophitus undulatus</td>
<td>135</td>
</tr>
<tr>
<td>Triangle floater</td>
<td>Alasmidonta undulata</td>
<td>38</td>
</tr>
</tbody>
</table>

In the Butternut Creek, we found sparse pearly mussel populations in the headwaters and, downstream, long reaches with dense pearly mussel populations (Figure 1). We encountered a few areas where silt obscured visibility and the pearly mussel populations became sparse. We found only one pearly mussel SGCN: the Yellow lampmussel. Other pearly mussel species found alive include Eastern lampmussels (*Lampsilis radiata*), Eastern elliptios (*Elliptio complanata*) and Squawfoots (*Strophitus undulatus*). We found several recent dead Triangle floaters (*A. undulata*) although we never found a live animal. Approximately 69 % of the live mussels surveyed were Eastern elliptio. The Eastern elliptio were overall smaller and less
eroded than Eastern elliptio animals collected elsewhere in New York Susquehanna River Watershed rivers. We found no Hellbenders.

Figure Redacted.

Figure 1. Butternut Creek and Unadilla River areas searched for pearly mussels (black) in 2011 noting locations with live pearly mussels and pearly mussel Species of Greatest Conservation Need (SGCN) as determined by the New York State Department of Environmental Conservation (NYSDEC, 2010). Elktoe (*Alasmidonta marginata*) = orange circle, Brook floater (*A. varicosa*; tentative identification) = red circle, Green floater (*Lasmigona subviridis*) = blue circle, Yellow lampmussel (*Lampsilis cariosa*) = yellow circle and other pearly mussels = green.

In the Unadilla River, recent pearly mussel deaths were evident in a small reach in the headwaters and in an extensive reach from the Skaneateles Turnpike south to West Edmeston. We determined most of these deaths occurred in the previous twelve months. In South Edmeston, we found an additional dead population of pearly mussels which we determined had been dead longer than a year, probably killed in the year prior to the survey year. We requested enforcement attention to probable illegal dumping of organic wastes. We found three pearly mussel SGCN: the Yellow lampmussel, the Elktoe and the Green floater (Figure 1). We found no animals that were clearly Brook floater, although we did find several possible Brook floaters similar to those noted previously (Strayer & Fetterman, 1999; Lord et al. 2011). We found no Hellbenders.

DISCUSSION

Removal of the Catatonk Creek dam poses a direct threat to the pearly mussel population in the intensely surveyed area below the dam. We are confident that we can identify a protecting location for temporary storage of the mussels if a decision is made to remove the dam. While moving involves risk for the population, there is potential benefit to the Brook floater population in the Catatonk Creek. There were few Brook floaters in the lower part of the surveyed area. The area immediately below Xxxxxx Road held the Brook floater population. This area had wooded wetlands on both sides of the Catatonk Creek similar to other high quality pearly mussel beds in New York Susquehanna River Watershed rivers (Figure 2; Lord et al. 2011). If the dam is removed and the stream restored, the stream would have protecting wetlands on both sides providing a hydraulic refuge as discussed in Lord et al. (2011).
Figure 2. Imagery of the area of the Catatonk Creek, below the intersection of XXXX Road and XXXXXXX Road, holding a population of Brook floater (*Alasmidonta varicosa*) delineating the wooded wetlands providing a hydraulic refuge for pearly mussels.

The Butternut Creek is a treasure. Most of the Creek areas we surveyed were protected with substantial buffers. The water is clear for most of the creek’s length. Some pearly mussel species thrive, but we did not find three of the four pearly mussel SGCN in the Butternut Creek. There could be any number of explanations. We suspect summer month water temperatures are not high enough to facilitate reproduction (Galbraith and Vaughn 2011), but this is something that needs to be studied for each species. The cold water also apparently slows growth of Eastern elliptio. Given the superannuated Eastern elliptio population and its lack of reproduction in New York Susquehanna River Watershed rivers, this Butternut Creek population may serve as a source of reproductive material should American eels (*Anguilla rostrata*) be reintroduced to the New York Susquehanna River Watershed rivers. (See Lord et al. 2011.)

Our Unadilla River survey provides the story of an opportunity missed. There have been at least two major losses of pearly mussels (estimated in the tens of thousands), including all SGCN species, in the last two years. Enforcement response has been slow and uncoordinated, apparently because the river forms the boundary between two NYSDEC regions which stymied enforcement of a problem that involves both sides of the river. It is unclear, at the time of this writing (five months after our initial report), whether illegal dumping has been completely stopped. There are still sizeable pearly mussel beds in the Unadilla River holding SGCN. The Unadilla River needs protection: buffers, strict enforcement of waste spreading regulations, and increased monitoring.

ACKNOWLEDGEMENTS

This work was facilitated by James Curatolo, Heidi M., and Mike Stensland.
REFERENCES

Curatolo, J. 2011. Personal communication. Upper Susquehanna Watershed Coordinator. Upper Susquehanna Coalition, 4729 State Route 414, Burdett, NY 14818. Office/Fax: (607) 546-2528; cell: (607) 765-4780; E-mail: jac3@htva.net.

