INTRODUCTION

This study was a continuation of long-term monitoring of Otsego Lake’s zooplankton community in order to document any changes that might be attributable to top down management efforts to control alewife (*Alosa pseudoharengus*) through the re-establishment of walleye (*Sander vitreus*).

Historically, Otsego Lake has been considered oligo-mesotrophic based on various trophic state indicators. Some of the earlier, comprehensive limnological data collected on Otsego Lake revealed transparencies and algal standing crops indicative of oligotrophic conditions (Godfrey 1977), despite phosphorus loading rates at levels typically associated with a more mesotrophic state (Godfrey 1979). This was attributed to Otsego’s large-bodied crustacean zooplankton which were more abundant than in other New York lakes studied at that time (Godfrey 1977).

Alewife, a visually-oriented, efficient plantivore, was first documented in Otsego Lake in 1986 (Foster 1990) and by 1990 it was the dominant forage fish in the lake. The zooplankton community had shifted to dominance by crustaceans, especially *Daphnia* spp., to rotifers (Foster and Wigens 1990). Rotifers are poor quality food items for fish, and they sequester less nutrients and have substantially lower algal grazing rates than do crustacean plankton (Warner 1999). Depressed abundances and lower mean sizes of crustacean zooplankton have been documented from the onset of alewife dominance through at least 2002; concurrent with this shift, mean summer transparencies, algal standing crops and rates of hypolimnetic oxygen depletion have increased (Harman et al. 2002). This was despite various mitigative efforts designed to reduce nutrient inputs to the lake (i.e., Murray and Leonard 2005; Albright 2005). Thus, the apparent shift toward more eutrophic conditions through the 1990s seemed attributable to cascading trophic changes resulting from the establishment of alewives and the subsequent declines in large crustacean zooplankton.

Otsego Lake has been stocked with walleye since 2000 at a targeted rate of 80,000 pond fingerlings each year. The primary intent was to take advantage of the forage base provided by alewives to re-establish this popular sports fish. Concurrent monitoring has attempted to document any changes that might be related to this trophic modification (Cornwell 2005).

1 Robert C. MacWaters Internship in Aquatic Sciences, summer 2005. Present affiliation: Department of Fisheries and Wildlife Technology, SUNY Agricultural and Technical College.
METHODS

Samples were generally collected bi-weekly, from 9 May to 18 August 2005, at TR4C, the deepest part of Otsego Lake (Figure 1). At this site a 0.2m diameter conical plankton net with a 147um mesh was hauled from 12 m (approximately the top of the hypolimnion) to the surface. A G.O.™ mechanical flow meter mounted across the net opening allowed for the determination of the volume of lake water filtered. Samples were preserved in ethanol. The volume of the preserved samples was recorded, allowing for the later back-calculation of zooplankton abundances in lake water. One ml of each sample was placed on a grided Sedgwick rafter cell. Zooplankton were identified, enumerated and measured using a research grade compound microscope with digital imaging and analysis capabilities.

Figure 1. Otsego Lake, New York, showing location of sample site (TR4-C).
Mean densities and lengths for cladocerans, copepods and rotifers were used to calculate dry weight (Peters and Downing 1984), daily filtering rate (Knoechel and Holtby 1986) and phosphorus regeneration (Esjmon-Karabin 1983) on each date sampled according to the equations given in Table 1.

Dry Weight: \[\text{D.W.} = 9.86 \times (\text{length in mm})^{2.1} \]
Filtering Rate: \[\text{F.R.} = 11.695 \times (\text{length in mm})^{2.48} \]

Phosphorous regeneration:
- Cladocerans: \[\text{P.R.} = 0.519 \times (\text{dry weight in ug})^{-0.023} \times e^{0.039 \times \text{temp. in C}} \]
- Copepods: \[\text{P.R.} = 0.229 \times (\text{dry weight in ug})^{-0.645} \times e^{0.039 \times \text{temp. in C}} \]
- Rotifers: \[\text{P.R.} = 0.0514 \times (\text{dry weight in ug})^{-1.27} \times e^{0.096 \times \text{temp. in C}} \]

Table 1. Equations used to determine zooplankton dry weight, filtering rate, and phosphorus regeneration.

RESULTS AND DISCUSSION

Table 2 provides a summary of the data, including mean epilimnetic temperature, numbers of each taxon per liter, average length, mean dry weight per individual and per liter, phosphorus regeneration rates per individual and per liter, filtering rates and the percentage of the epilimnion filtered per day.

While the mean summer density of crustacean zooplankton has remained relatively constant since 2000, mean sizes have increased substantially in recent years (Table 3). The zooplankton community historically was comprised largely of \textit{Daphnia} spp., though they declined markedly following the alewife introduction (Harman et al. 2002) and remained low through 2003 (Burns 2004). During that period, smaller \textit{Bosmina} dominated the crustacean community. Throughout summers of 2004 and 2005, \textit{Daphnia} were the dominant cladaceran. This shift led to a substantial increase in mean cladaceran size (0.55 mm), as \textit{Daphnia} averaged 0.74 mm compared to the average size of 0.35 mm for \textit{Bosmina}. Because of the exponential nature of the length:biomass relationship, this shift lead to an approximate doubling in epilimnetic filtering rates between 2000-2003 and 2004-2005 (Table 3). This increased filtering rate was not coupled with higher rates of phosphorus regeneration, as larger organisms regenerate less phosphorus per unit biomass than do smaller ones (Warner 1999).
Table 3. Mean crustacean density, mean cladoceran size and mean dry weight, percent of the epilimnion filtered per day and phosphorus regeneration by crustaceans in 2000, 2002, 2003, 2004 and 2005.

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean crustacean density (#/l)</td>
<td>208</td>
<td>146</td>
<td>132</td>
<td>163</td>
<td>159</td>
</tr>
<tr>
<td>Mean cladoceran size (mm)</td>
<td>0.29</td>
<td>0.30</td>
<td>0.36</td>
<td>0.532</td>
<td>0.551</td>
</tr>
<tr>
<td>Mean crustacean dry weight (ug/l)</td>
<td>175</td>
<td>145</td>
<td>177</td>
<td>261</td>
<td>206</td>
</tr>
<tr>
<td>Mean % of epilimnion filtered /day)</td>
<td>11.9</td>
<td>9.9</td>
<td>12.7</td>
<td>25.1</td>
<td>19.2</td>
</tr>
<tr>
<td>Mean phosphorus regeneration (ug/l/day)</td>
<td>4.49</td>
<td>2.6</td>
<td>3.1</td>
<td>4.4</td>
<td>2.7</td>
</tr>
</tbody>
</table>

CONCLUSION

Mean crustacean size and biomass were similar to those recorded during summer 2004, being higher than in any other year monitored since alewife establishment. This increase in mean crustacean size and biomass is concurrent with top down management efforts related to attempts to re-establish walleye (Cornwell 2005). In June 2005, alewife densities were acoustically measured to be substantially lower than in the springs of each year monitored previously (Cornwell 2005, Brooking and Cornwell 2006), though densities in fall 2005 had rebounded to among the highest fall values observed (Brooking and Cornwell 2006). Secchi transparencies over summer 2005 were similar to those of recent years; the rate of areal hypolimnetic oxygen depletion, however, was the lowest recorded since 1988 (Albright 2006). This suggests that many of the variables measured seem to be dependent upon alewife densities. Continued monitoring seems necessary, however, to ascertain whether walleye re-establishment is sufficient to control alewife numbers.

REFERENCES

Esjmont-Karabin, J. 1984. Phosphorus and nitrogen excretion by lake zooplankton (rotifers and crustaceans) in relation to the individual body weights of the animals, ambient temperature, and presence of food. Ekologia Polska 32:3-42.

